1.Small bowel video keyframe retrieval based on multi-modal contrastive learning.
Xing WU ; Guoyin YANG ; Jingwen LI ; Jian ZHANG ; Qun SUN ; Xianhua HAN ; Quan QIAN ; Yanwei CHEN
Journal of Biomedical Engineering 2025;42(2):334-342
Retrieving keyframes most relevant to text from small intestine videos with given labels can efficiently and accurately locate pathological regions. However, training directly on raw video data is extremely slow, while learning visual representations from image-text datasets leads to computational inconsistency. To tackle this challenge, a small bowel video keyframe retrieval based on multi-modal contrastive learning (KRCL) is proposed. This framework fully utilizes textual information from video category labels to learn video features closely related to text, while modeling temporal information within a pretrained image-text model. It transfers knowledge learned from image-text multimodal models to the video domain, enabling interaction among medical videos, images, and text data. Experimental results on the hyper-spectral and Kvasir dataset for gastrointestinal disease detection (Hyper-Kvasir) and the Microsoft Research video-to-text (MSR-VTT) retrieval dataset demonstrate the effectiveness and robustness of KRCL, with the proposed method achieving state-of-the-art performance across nearly all evaluation metrics.
Humans
;
Video Recording
;
Intestine, Small/diagnostic imaging*
;
Machine Learning
;
Image Processing, Computer-Assisted/methods*
;
Algorithms
2.Local abaloparatide administration promotes in situ alveolar bone augmentation via FAK-mediated periosteal osteogenesis.
Ruyi WANG ; Yuan LI ; Bowen TAN ; Shijia LI ; Yanting WU ; Yao CHEN ; Yuran QIAN ; Haochen WANG ; Bo LI ; Zhihe ZHAO ; Quan YUAN ; Yu LI
International Journal of Oral Science 2025;17(1):63-63
Insufficient alveolar bone thickness increases the risk of periodontal dehiscence and fenestration, especially in orthodontic tooth movement. Abaloparatide (ABL), a synthetic analog of human PTHrP (1-34) and a clinical medication for treating osteoporosis, has recently demonstrated its potential in enhancing craniofacial bone formation. Herein, we show that intraoral submucosal injection of ABL, when combined with mechanical force, promotes in situ alveolar bone thickening. The newly formed bone is primarily located outside the original compact bone, implying its origin from the periosteum. RNA sequencing of the alveolar bone tissue revealed that the focal adhesion (FA) pathway potentially mediates this bioprocess. Local injection of ABL alone enhances cell proliferation, collagen synthesis, and phosphorylation of focal adhesion kinase (FAK) in the alveolar periosteum; when ABL is combined with mechanical force, the FAK expression is upregulated, in line with the accomplishment of the ossification. In vitro, ABL enhances proliferation, migration, and FAK phosphorylation in periosteal stem cells. Furthermore, the pro-osteogenic effects of ABL on alveolar bone are entirely blocked when FAK activity is inhibited by a specific inhibitor. In summary, abaloparatide combined with mechanical force promotes alveolar bone formation via FAK-mediated periosteal osteogenesis. Thus, we have introduced a promising therapeutic approach for drug-induced in situ alveolar bone augmentation, which may prevent or repair the detrimental periodontal dehiscence, holding significant potential in dentistry.
Osteogenesis/drug effects*
;
Periosteum/cytology*
;
Parathyroid Hormone-Related Protein/administration & dosage*
;
Animals
;
Focal Adhesion Protein-Tyrosine Kinases/metabolism*
;
Alveolar Process/drug effects*
;
Cell Proliferation/drug effects*
;
Phosphorylation
;
Rats
;
Male
;
Humans
;
Focal Adhesion Kinase 1/metabolism*
;
Cell Movement/drug effects*
3.Clinical characteristics and prognosis of 8 cases of severe infant botulism
Lijuan WANG ; Kechun LI ; Suyun QIAN ; Hengmiao GAO ; Jun LIU ; Zheng LI ; Xinlei JIA ; Chaonan FAN ; Quan WANG
Chinese Journal of Pediatrics 2024;62(3):218-222
Objective:To summarize the clinical characteristics and prognosis of severe infant botulism and evaluate the therapeutic effect of botulinum antitoxin in the pediatric intensive care unit (PICU).Methods:The clinical data of 8 cases diagnosed with infantile botulism were retrospectively analyzed in the PICU of Beijing Children′s Hospital from October 2019 to August 2023. Data of basic demographic information, clinical manifestations, laboratory tests, treatment and prognosis of each child were collected and analyzed using descriptive statistical methods.Results:Eight laboratory-confirmed cases of infant botulism were included in this study, all of which were male infants with an age of 6.0 (3.3,6.8) months. Three of the children were from Inner Mongolia Autonomous Region, 2 of them were from Hebei, and the other 3 were from Beijing, Shandong and Xinjiang Uyghur Autonomous Region, respectively. All the patients were previously healthy. In 4 of these cases, the possible cause was the ingestion of either honey and its products or sealed pickled food by the mother or child before the onset of the disease. The first symptom was poor milk intake (4 cases), followed by shallow shortness of breath (7 cases), limb weakness (7 cases) and so on. The typical signs were bilateral dilated pupils (8 cases) and decreased limb muscle strength (8 cases). The main subtype was type B (7 cases), and only 1 case was classified as type A. Six of the children were treated with antitoxin therapy for a duration of 24 (19, 49) d. Seven of them had invasive mechanical ventilation. All the patients survived upon discharge with a follow-up period of 29 d to 3 years and 8 months. Six patients had fully recovered, and 2 recently discharged patients were gradually recovering.Conclusions:For infants with suspected contact or ingestion of botulinum and presented with bilateral pupillary paralysis, muscle weakness and clear consciousness, the stool should be collected for diagnostic testing using a mouse bioassay as soon as possible. Type B was the most common type. The antitoxin treatment was effectiveness and the prognosis was well.
4.Analysis of characteristics of suicidal behavior of children admissed in pediatric intensive care unit
Guangyuan ZHAO ; Jie WU ; Quan WANG ; Zheng LI ; Kun LIAO ; Suyun QIAN
Chinese Pediatric Emergency Medicine 2024;31(10):767-771
Objective:To summarize the clinical characteristics of suicidal behavior in children and provide a reference for further developing strategies for preventing childhood suicide.Methods:The medical records of children hospitalized in the pediatric intensive care unit(PICU)at Beijing Children's Hospital for suicidal behavior in the electronic medical record system from January 1,2018,to December 31,2022 were retrospectively selected.Clinical data of children with suicidal behavior were collected.Results:A total of 3 249 patients were admitted to the PICU,including 62 suicide patients.There were 20(32.3%) males,and 42(67.7%) females,with a male-to-female ratio of 1:2.1.The average age was (13.1 ± 1.5) years old,with a minimum age of 7.9 years and a maximum age of 15.7 years.There were 17 (27.4%) children with previously diagnosed mental illnesses.Notably 58.1% children had triggering factors for suicidal behavior.Analysis of suicide methods,53(85.5%) cases were intentional drug ingestion,six(9.7%) cases were jumping from height,and three(4.8%) cases were hanging.Additionally 26.4% cases of poisoning were male,while 66.7% of cases of jumping from height and hanging were male.There was a statistical difference in suicide methods between genders (χ 2=5.704, P=0.025).The poisoning ingestions were classified as 20(37.7%) cases of toxins; 14(26.4%) cases of antidepressants; 10(18.9%) cases of over-the-counter drugs; five(9.4%) cases of other prescription drugs; three(5.7%) cases of sedative drugs; one(1.9%) case of daily chemical.Sources of ingestions: 18(34.0%) cases were purchased personally (pharmacies or online shopping); 16(30.2%) cases were storing medicines at home; 13(24.5%) cases were daily taking antidepressants.Compared with non-poisoning patients,poisoning patients had a significantly shorter PICU duration (Z=-2.884, P=0.004).The total mortality rate of children admitted to PICU due to suicide was 16.1%(10/62).There was a statistical difference in the mortality rate among different suicide methods (χ 2=7.883, P=0.019). Conclusion:School aged children and boys are more likely to choose impulsive and more harmful suicide behaviors such as jumping from heights and hanging,and adolescent girls are more likely to choose intentional poisoning as their suicide method.Attention should be paid to the suicide risk of different age and gender groups.Intentional drug ingestion is the main method of suicide in children.Herbicide poisoning and antidepressant drug poisoning are the leading causes of suicide death.The death risk of suicidal behavior in children may be reduced by controlling the way of getting pesticides (especially herbicides) and obtaining maximum doses of antidepressants.
5.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
6.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
7.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
8.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
9.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
10.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.

Result Analysis
Print
Save
E-mail