1.Mechanism of Traditional Chinese Medicine Against Gouty Arthritis via Regulating Nrf2 Signaling Pathway: A Review
Siyi CHEN ; Shumin HUANG ; Yushan ZHAO ; Jiajin LIN ; Qian SHI ; Yefeng CHEN ; Yize ZHANG ; Zhongwen ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):323-330
Gouty arthritis (GA) is an inflammatory disorder caused by monosodium urate (MSU) crystal deposition, accompanied by elevated oxidative stress and aberrant release of inflammatory cytokines, resulting in joint tissue damage and intense pain. Nuclear factor E2-related factor 2 (Nrf2), a key transcription factor regulating the antioxidant defence system, exerts cytoprotective effects through dissociation from Kelch-like ECH-associated protein 1 (Keap1) and activates downstream antioxidant response element (ARE)-mediated pathways. It can upregulate the expression of heme oxygenase-1 (HO-1), NADH quinone oxidoreductase 1 (NQO1), superoxide dismutase (SOD), and glutathione transferase (GST) to preserve redox homeostasis. Moreover, Nrf2 can suppress activation of NOD-like receptor protein 3 (NLRP3) inflammasomes, reduce pro-inflammatory cytokine production and release, modulate nuclear factor-κB (NF-κB) transcriptional activity, regulate gut microbiota balance, enhance mitophagy, and inhibit apoptosis, so as to reduce joint inflammation and pain and promote body recovery. This review systematically examined recent advancements in traditional Chinese medicine (TCM) for GA prevention and treatment via regulating the Nrf2 signaling pathway. It delineated Nrf2's molecular mechanisms and its role in GA pathogenesis and elucidated how TCM intervenes in multiple pathways including Keap1/Nrf2/ARE, Nrf2/HO-1(NQO1), and Nrf2/NF-κB/NLRP3 to exert therapeutic effects. The study demonstrated that TCM monomers and compounds effectively counteract oxidative damage, attenuate inflammatory responses, promote autophagy, and inhibit apoptosis via regulating the Nrf2 signaling pathway. These findings not only clarify the scientific basis of TCM in GA treatment but also offer strategic insights for developing novel Nrf2-targeted anti-gout drugs.
2.Effects of donor gender on short-term survival of lung transplant recipients: a single-center retrospective cohort study
Xiaoshan LI ; Shiqiang XUE ; Min XIONG ; Rong GAO ; Ting QIAN ; Lin MAN ; Bo WU ; Jingyu CHEN
Organ Transplantation 2025;16(4):591-598
Objective To evaluate the effect of donor gender on short-term survival rate of lung transplant recipients. Methods A retrospective analysis was conducted on the data of 1 066 lung transplant recipients. The log-rank test was used to evaluate the differences in short-term fatality among different donor gender groups and donor-recipient gender combination groups. Multivariate Cox regression, propensity score (PS) regression, and propensity score matching (PSM) were employed to control for confounding factors and further assess the differences in fatality. Subgroup analyses were also performed based on donor gender. Results Multivariate Cox regression analysis showed no statistically significant differences in fatality at 30 days, 1 year, 2 years and 3 years postoperatively between male and female donor groups (all P>0.05). After PS regression and PSM, univariate Cox regression analysis indicated that recipients from female donors had a higher fatality at 2 years postoperatively compared to those from male donors, with hazard ratios (95% confidence intervals) of 1.29 (1.01-1.65) and 1.36 (1.03-1.80) respectively. Multivariate Cox regression analysis also revealed no statistically significant differences in fatality at various follow-up time points among different donor-recipient gender combination groups (all P>0.05). Subgroup analyses based on donor sex showed no statistically significant differences in fatality among recipients of different gender within either male or female donor groups (all P>0.05). Conclusions Female donors may reduce the short-term postoperative survival rate of lung transplant recipients, but this negative impact is not sustainable in the long term. At present, there is no evidence to support the inclusion of sex as a factor in lung allocation rules.
3.Identification of unknown pollutants in drinking water based on solid-phase extraction and supramolecular solvent extraction
Zixin QIAN ; Yuhang CHEN ; Chao FENG ; Yuanjie LIN ; Qian XU ; Ziwei LIANG ; Xinyu WANG ; Dasheng LU ; Ping XIAO ; Zhijun ZHOU
Journal of Environmental and Occupational Medicine 2025;42(7):854-861
Background With the progression of industrialization, an increasing number of emerging contaminants are entering aquatic environments, posing significant threats to the safety of drinking water. Therefore, establishing a system for identifying unknown hazardous factors and implementing safety warning mechanisms for drinking water is of paramount importance. Among these efforts, non-target screening plays a critical role, but its effectiveness is largely constrained by the scope of coverage of sample pre-treatment methods. Objective To integrate modern chromatography/mass spectrometry techniques with advanced data mining methods to develop a non-discriminatory sample pre-treatment method for comprehensive enrichment of unknown contaminants in drinking water, laying a technical foundation for the discovery and identification of unknown organic hazardous factors in drinking water. Methods A non-discriminatory pre-treatment method based on supramolecular and solid-phase extraction was developed. The final target compounds including 333 pesticides, 194 pharmaceuticals and personal care products (PPCPs), and 59 per- and polyfluoroalkyl substances (PFASs) were used for optimizing the pre-treatment method, confirming its coverage. The impacts of different eluents on the absolute recovery rates of target compounds were compared to select the conditions with the highest recovery for sample pre-treatment. The effects of different supramolecular solvents and salt concentrations on target compound recovery were also evaluated to determine the most suitable solvent and salt concentration. Results The solid-phase extraction elution solvents, supramolecular extraction solvents, and salt concentrations were optimized based on the target compound recovery rates. The optimal recovery conditions were achieved using 2 mL methanol, 2 mL methanol (containing 1% formic acid), 2 mL ethyl acetate, 2 mL dichloromethane, hexanediol supramolecular solvent, and 426 mg salt. The detection method developed based on these conditions showed a good linear relationship for all target compounds in the range of 0.1-100.0 ng·mL−1, with R² > 0.99. The method’s limit of detection ranged from 0.01 ng−1 to 0.95 ng−1, and 95% of target compounds were recovered in the range of 20%-120%, with relative standard deviation (RSD) less than 30%, indicating good precision. Conclusion The combined pre-treatment method of solid-phase extraction and supramolecular solvent extraction can effectively enrich contaminants in drinking water across low, medium, and high polarities, enabling broad-spectrum enrichment of diverse trace contaminants in drinking water. It provides technical support for broad-spectrum, high-throughput screening and identification of organic pollutants in drinking water, and also serves as a reference for establishing urban drinking water public safety warning systems.
4.Omics in IgG4-related disease.
Shaozhe CAI ; Yu CHEN ; Ziwei HU ; Shengyan LIN ; Rongfen GAO ; Bingxia MING ; Jixin ZHONG ; Wei SUN ; Qian CHEN ; John H STONE ; Lingli DONG
Chinese Medical Journal 2025;138(14):1665-1675
Research on IgG4-related disease (IgG4-RD), an autoimmune condition recognized to be a unique disease entity only two decades ago, has processed from describing patients' symptoms and signs to summarizing its critical pathological features, and further to investigating key pathogenic mechanisms. Challenges in gaining a better understanding of the disease, however, stem from its relative rarity-potentially attributed to underrecognition-and the absence of ideal experimental animal models. Recently, with the development of various high-throughput techniques, "omics" studies at different levels (particularly the single-cell omics) have shown promise in providing detailed molecular features of IgG4-RD. While, the application of omics approaches in IgG4-RD is still at an early stage. In this paper, we review the current progress of omics research in IgG4-RD and discuss the value of machine learning methods in analyzing the data with high dimensionality.
Humans
;
Immunoglobulin G4-Related Disease/metabolism*
;
Immunoglobulin G/metabolism*
;
Machine Learning
;
Animals
;
Proteomics/methods*
5.Concordance and pathogenicity of copy number variants detected by non-invasive prenatal screening in 38,611 pregnant women without fetal structural abnormalities.
Yunyun LIU ; Jing WANG ; Ling WANG ; Lin CHEN ; Dan XIE ; Li WANG ; Sha LIU ; Jianlong LIU ; Ting BAI ; Xiaosha JING ; Cechuan DENG ; Tianyu XIA ; Jing CHENG ; Lingling XING ; Xiang WEI ; Yuan LUO ; Quanfang ZHOU ; Ling LIU ; Qian ZHU ; Hongqian LIU
Chinese Medical Journal 2025;138(4):499-501
6.Research progress on the mechanisms of Tau phosphorylation and its kinases in hypoxic-ischemic brain damage.
Qi-Yi HUANG ; You XIANG ; Jia-Hang TANG ; Li-Jia CHEN ; Kun-Lin LI ; Wei-Fang ZHAO ; Qian WANG
Acta Physiologica Sinica 2025;77(1):139-150
Hypoxic-ischemic brain damage (HIBD) is one of the main causes of disability in middle-aged and elderly people, as well as high mortality rates and long-term physical impairments in newborns. The pathological manifestations of HIBD include neuronal damage and loss of myelin sheaths. Tau protein is an important microtubule-associated protein in brain, exists in neurons and oligodendrocytes, and regulates various cellular activities such as cell differentiation and maturation, axonal transport, and maintenance of cellular cytoskeleton structure. Phosphorylation is a common chemical modification of Tau. In physiological condition, it maintains normal cell cytoskeleton and biological functions by regulating Tau structure and function. In pathological conditions, it leads to abnormal Tau phosphorylation and influences its structure and functions, resulting in Tauopathies. Studies have shown that brain hypoxia-ischemia could cause abnormal alteration in Tau phosphorylation, then participating in the pathological process of HIBD. Meanwhile, brain hypoxia-ischemia can induce oxidative stress and inflammation, and multiple Tau protein kinases are activated and involved in Tau abnormal phosphorylation. Therefore, exploring specific molecular mechanisms by which HIBD activates Tau protein kinases, and elucidating their relationship with abnormal Tau phosphorylation are crucial for future researches on HIBD related treatments. This review aims to focus on the mechanisms of the role of Tau phosphorylation in HIBD, and the potential relationships between Tau protein kinases and Tau phosphorylation, providing a basis for intervention and treatment of HIBD.
Humans
;
tau Proteins/physiology*
;
Phosphorylation
;
Hypoxia-Ischemia, Brain/physiopathology*
;
Animals
;
Oxidative Stress
7.Prediction of quality markers for cough-relieving and phlegm-expelling effects of Kening Granules based on plasma pharmacology combined with network pharmacology and pharmacokinetics.
Qing-Qing CHEN ; Yuan-Xian ZHANG ; Qian WANG ; Jin-Ling ZHANG ; Lin ZHENG ; Yong HUANG ; Yang JIN ; Zi-Peng GONG ; Yue-Ting LI
China Journal of Chinese Materia Medica 2025;50(4):959-973
This study predicts the quality markers(Q-markers) for the cough-relieving and phlegm-expelling effects of Kening Granules based on pharmacodynamics, plasma drug chemistry, network pharmacology, and pharmacokinetics. Strong ammonia solution spray and phenol red secretion assays were employed to evaluate the cough-relieving and phlegm-expelling effects of Kening Granules. Twentysix absorbed prototype components of Kening Granules were identified by ultra high performance liquid chromatography coupled with QExactive Plus quadrupole/Orbitrap high resolution mass spectrometry(UHPLC-Q-Exactive Plus Orbitrap HRMS). Through network pharmacology, 11 potential active components were screened out for the cough-relieving and phlegm-expelling effects of Kening Granules. The 11 components acted on 40 common targets such as IL6, TLR4, and STAT3, which mainly participated in PI3K/Akt, HIF-1, and EGFR signaling pathways. Pharmacokinetic quantitative analysis was performed for 7 prototype components. Three compounds including azelaic acid, caffeic acid, and vanillin were identified as Q-markers for the cough-relieving and phlegm-expelling effects of Kening Granules based on their effectiveness, transmissibility, and measurability. The results of this study are of great significance for clarifying the pharmacological substance basis, optimizing the quality standards, and promoting the clinical application of Kening Granules.
Drugs, Chinese Herbal/administration & dosage*
;
Network Pharmacology
;
Cough/blood*
;
Male
;
Humans
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Biomarkers/blood*
;
Quality Control
;
Chromatography, High Pressure Liquid
;
Antitussive Agents/chemistry*
8.Research progress on natural small molecule compound inhibitors of NLRP3 inflammasome.
Tian-Yuan ZHANG ; Xi-Yu CHEN ; Xin-Yu DUAN ; Qian-Ru ZHAO ; Lin MA ; Yi-Qi YAN ; Yu WANG ; Tao LIU ; Shao-Xia WANG
China Journal of Chinese Materia Medica 2025;50(3):644-657
In recent years, there has been a growing interest in the research on NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome inhibitors in the treatment of inflammatory diseases. The NLRP3 inflammasome is integral to the innate immune response, and its abnormal activation can lead to the release of pro-inflammatory cytokine, consequently facilitating the progression of various pathological conditions. Therefore, investigating the pharmacological inhibition pathway of the NLRP3 inflammasome represents a promising strategy for the treatment of inflammation-related diseases. Currently, the Food and Drug Administration(FDA) has not approved drugs targeting the NLRP3 inflammasome for clinical use due to concerns regarding liver toxicity and gastrointestinal side effects associated with chemical small molecule inhibitors in clinical trials. Natural small molecule compounds such as polyphenols, flavonoids, and alkaloids are ubiquitously found in animals, plants, and other natural substances exhibiting pharmacological activities. Their abundant sources, intricate and diverse structures, high biocompatibility, minimal adverse reactions, and superior biochemical potency in comparison to synthetic compounds have attracted the attention of extensive scholars. Currently, certain natural small molecule compounds have been demonstrated to impede the activation of the NLRP3 inflammasome via various action mechanisms, so they are viewed as the innovative, feasible, and minimally toxic therapeutic agents for inhibiting NLRP3 inflammasome activation in the treatment of both acute and chronic inflammatory diseases. Hence, this study systematically examined the effects and potential mechanisms of natural small molecule compounds derived from traditional Chinese medicine on the activation of NLRP3 inflammasomes at their initiation, assembly, and activation stages. The objection is to furnish theoretical support and practical guidance for the effective clinical application of these natural small molecule inhibitors.
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Inflammasomes/metabolism*
;
Inflammation/drug therapy*
;
Anti-Inflammatory Agents/therapeutic use*
;
Humans
;
Animals
;
Disease Models, Animal
;
Biological Products/therapeutic use*
;
Drug Discovery
;
Medicine, Chinese Traditional/methods*
9.Studies on common irritant components in three different base sources of Polygonati Rhizoma.
Yu-Xin GU ; Hong-Li YU ; Min SHEN ; Xin-Zhi WANG ; Kui-Long WANG ; Jie CAO ; Qian-Lin CHEN ; Yan-Qing XU ; Chang-Li SHEN ; Hao WU
China Journal of Chinese Materia Medica 2025;50(12):3223-3231
To explore the common irritant components in different base sources of Polygonati Rhizoma(PR). A rabbit eye irritation experiment was conducted to compare the irritant effects of raw products of Polygonatum kingianum, P. officinale, and P. multiflorum. The irritant effects of different solvent extraction parts and needle crystals of PR were compared, and the irritant components were screened. The morphology and structure of the purified needle crystal of PR were observed by microscope and scanning electron microscope and characterized by X-ray diffraction. Rabbit eye irritation and mouse abdominal inflammation model were used to evaluate rabbit eye irritation scores, inflammatory mediators, inflammatory factors levels in the peritoneal exudate of mice, with the peritoneal pathological section used as indicators. The inflammatory effect of needle crystals of PR was studied, and the content of calcium oxalate in three kinds of PR was determined by HPLC. The common protein in three kinds of PR was screened and compared by double enzymatic hydrolysis in solution combined with mass spectrometry. The results showed that three kinds of PR raw products had certain irritant effects on rabbit eyes, among which P. kingianum had the strongest irritant effect. There were no obvious irritant effects in the different solvent extraction parts of P. kingianum. Compared with the blank group, the needle crystal of PR had a significant irritant effect on rabbit eyes, and the inflammatory mediators and inflammatory factors in the peritoneal exudate were significantly increased(P<0.05) in a dose-dependent manner. Meanwhile, the peritoneal tissue of mice was damaged with significant inflammatory cell infiltration after intraperitoneal injection of needle crystal, indicating that needle crystal had an inflammatory effect. Microscope and scanning electron microscope observations showed that the needle crystals of PR were slender, with a length of about 100-200 μm and sharp ends. X-ray diffraction analysis showed that the needle crystals of PR were calcium oxalate monohydrate crystals. The results of HPLC showed that the content of calcium oxalate in P. kingianum was the highest among the three kinds of PR. It was speculated that the content of needle crystal in P. kingianum was higher than that in P. officinale and P. multiflorum, which was consistent with the results of the rabbit eye irritation experiment. The results of mass spectrometry showed that ribosome inactivating protein and mannose/sialic acid binding lectin were related to inflammation and cell metabolism in all three kinds of PR. There was no obvious irritant effect in different solvent extracts of PR. The calcium oxalate needle crystal contained was the main irritant component of PR, and three kinds of PR contained common ribosome inactivating protein and mannose/sialic acid binding lectin, which may be related to the inflammatory irritant effect of PR.
Animals
;
Rabbits
;
Mice
;
Polygonatum/chemistry*
;
Drugs, Chinese Herbal/toxicity*
;
Rhizome/chemistry*
;
Male
;
Eye/drug effects*
;
Female
;
Humans
10.Mechanism of Hezi Decoction in reducing toxic side effects of Euphoriae Ebracteolata Radix on intestine based on proteomics.
Qian-Lin CHEN ; Hong-Li YU ; Hao WU ; Xin-Zhi WANG ; Tong-Laga LI ; Bing-Bing LIU ; Xin LI ; Yu-Xin GU ; Yan-Qing XU
China Journal of Chinese Materia Medica 2025;50(12):3214-3222
This paper aimed to explore the intestinal toxicity of Euphoriae Ebracteolata Radix(EER) before and after being processed with Mongolian medicine Hezi Decoction(HZD) and the toxicity-reducing mechanism of this processing method. The intestinal toxicity in rats treated with unprocessed EER and HZD-processed EER extracts via 95% ethanol was compared. The comparison was based on several indicators, including fecal volume, serum diamine oxidase(DAO) and D-lactate(D-LA) levels, the water content of various intestinal segments and their contents, and inflammatory factor levels in intestinal segments. Tandem mass tag(TMT) quantitative proteomics technology was employed to analyze the key proteins associated with changes in intestinal toxicity between unprocessed EER and HZD-processed EER. The results indicated that compared with the blank group, unprocessed EER significantly increased the fecal volume, serum DAO and D-LA levels, water content of the ileal segment and its contents, as well as the release levels of inflammatory factors, including tumor necrosis factor(TNF-α) and interleukin-1 beta(IL-1β) in the ileal segment of rats(P<0.05), indicating that EER can cause diarrhea, increase intestinal permeability, and induce intestinal inflammation. Compared with those in the unprocessed EER group, all indicators in the HZD-processed EER group were significantly reduced(P<0.05). The TMT quantitative proteomics analysis revealed that a total of 6 487 proteins were identified in the rat ileum tissue. Compared to the blank group, 182 proteins exhibited significant changes in the unprocessed EER group, while 907 proteins in the HZD-processed EER group showed significant changes. The intersection of the differential proteins between the two groups identified 38 common proteins. Among them, the protein levels of intestinal barrier tight junction protein claudin3, squalene monooxidase(Sqle), clusterin, Na~+/H~+ exchange regulatory cofactor NHE-RF3(Pdzk1), and Y+L amino acid transporter 1(Slc7a7) exhibited significant changes before and after processing, and these changes were closely related to intestinal barrier function. Compared with the blank group, the expression of claudin3, Pdzk1, and Slc7a7 in the raw product group was significantly down-regulated(P<0.05),while the expression of Sqle and clusterin was significantly up-regulated(P<0.05).Compared with the raw product group, the expression of claudin3, Pdzk1, and Slc7a7 in the processed product group of HZD was significantly up-regulated(P<0.05), while the expression of Sqle and clusterin was significantly down-regulated(P<0.05). Western blot was used to detect the expression level of claudin 3 in the ileum of rats in each group. The results show that compared to that in the blank group, the expression level of claudin 3 in the unprocessed EER group was significantly reduced(P<0.01); compared to that in the unprocessed EER group, the expression level of claudin 3 in the HZD-processed EER group was significantly increased(P<0.01). This finding aligned with the proteomic outcomes, indicating that claudin 3 protein levels could serve as a crucial indicator for intestinal damage caused by EER. In summary, HZD-processed EER can reduce EER's intestinal toxicity, and the primary mechanism for its alleviation of intestinal barrier damage is the regulation of the intestinal barrier tight junction protein claudin 3 and other intestinal-related proteins.
Animals
;
Drugs, Chinese Herbal/adverse effects*
;
Proteomics
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Intestines/drug effects*
;
Intestinal Mucosa/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*

Result Analysis
Print
Save
E-mail