1.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
2.Effects and mechanism of total alkaloids of Corydalis Rhizoma on the regulation of cuproptosis in rats with diabetic cardiomyopathy
Jun LI ; Yazhi QI ; Ya TANG ; Rui CAO ; Qiang XU ; Yusheng HAN
China Pharmacy 2025;36(7):801-806
OBJECTIVE To investigate the effects and mechanism of total alkaloids of Corydalis Rhizoma (TAC) on the regulation of cuproptosis in rats with diabetic cardiomyopathy (DCM) based on silence information regulator 1(Sirt1)/tumor protein 53(P53)signaling pathway. METHODS DCM rat model was induced by high-fat and high-sugar diet and intraperitoneal injection of streptozotocin. Thirty-two model rats were randomly divided into model group, TAC low-dose, medium-dose and high-dose groups (7, 10.5, 14 mg/kg), with 8 rats in each group. An additional 8 rats were assigned to normal control group. Related drugs or normal saline were administered intragastrically in each group, once a day, for 4 weeks. After the last medication, the fasting blood glucose (FBG) levels of the rats were measured. The levels of myocardial creatine kinase (CK), creatine kinase isoenzyme (CK-MB), and lactate dehydrogenase (LDH) in serum and myocardial tissue of rats were all detected. The pathological morphology, fibrosis degree, and Cu2+ deposition of myocardial tissue in rats were observed. The levels of Cu2+ and glutathione (GSH) in myocardial tissue, the expressions of Sirt1/P53 signaling pathway-related proteins [Sirt1, P53, solute carrier family 7 membrane 11 (SLC7A11)], and iron-sulfur cluster-related proteins [ferredoxin 1 (FDX1), lipoic acid synthetase (LIAS), aconitase 2 (ACO2), NADH-ubiquinone oxidoreductase core subunit S8 (NDUFS8), dihydrolipoamide acetyltransferase (DLAT), dihydrolipoamide succinyltransferase (DLST)], and heat shock protein 70 (HSP70) were all determined. RESULTS Compared with normal control group, the model group exhibited significantly elevated levels of FBG, CK, CK-MB and LDH in both serum and myocardial tissue, as well as increased 2+ levels of Cu in myocardial tissue and the expression of P53 and HSP70 proteins (P<0.05); the level of GSH and the expression levels of Sirt1, SLC7A11, FDX1, LIAS, ACO2, NDUFS8, DLAT, and DLST proteins in myocardial tissue were all significantly decreased (P<0.05); the myocardial tissue exhibited severe pathological damage, with numerous inflammatory cell infiltrations and significant fibrosis, as well as increased deposition of Cu2+. Compared with model group, most of the above quantitative indicators in rats were significantly reversed in TAC groups (P<0.05); the pathological damage to the myocardial tissue was alleviated, with reduced fibrosis and Cu2+ deposition. CONCLUSIONS TAC can ameliorate DCM in rats, and its mechanism of action may be related to activating the activity of the Sirt1/P53 signaling pathway, promoting the chelation of GSH with Cu2+, and inhibiting cuproptosis of cardiomyocyte.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.Protective effects and mechanisms of sodium pyruvate on storage lesions in human red blood cells
Haoning CHEN ; Qi MIAO ; Qiang GAO ; Xin SUN ; Shunyu MEI ; Li WANG ; Yun LIAN ; Honglin LUO ; Chenjie ZHOU ; Hao LI
Chinese Journal of Blood Transfusion 2025;38(6):833-838
Objective: To investigate the protective effects and underlying mechanisms of sodium pyruvate (SP) on RBC storage lesions using an oxidative damage model. Methods: Six units of leukocyte-depleted suspended RBCs (discarded for non-infectious reasons within three days post-collection) were randomly assigned to four groups: negative control (NS), positive control (PS), experimental group 1 (SP1), and experimental group 2 (SP2). Oxidative stress was induced in the PS group by the addition of hydrogen peroxide (H
O
), while SP1 and SP2 received SP supplementation at different concentrations (25 mM and 50 mM, respectively) in the presence of H
O
. After 1 hour of incubation, RBC morphology was assessed microscopically, and biochemical indicators including glutathione (GSH), malondialdehyde (MDA), methemoglobin (MetHb), adenosine triphosphate (ATP), and Na
/K
-ATPase activity were measured. Results: RBCs in the PS group exhibited pronounced morphological damage, including cell shrinkage and echinocyte formation, whereas both SP-treated groups showed significantly reduced structural injury. SP treatment led to elevated GSH levels and decreased concentrations of MDA and MetHb, suggesting attenuation of oxidative stress. Additionally, SP enhanced intracellular ATP levels and Na
/K
-ATPase activity, thereby contributing to membrane stability. Notably, the SP2 group (50 mM) demonstrated superior protective effects compared to SP1 (25 mM). Conclusion: Sodium pyruvate effectively attenuates oxidative storage lesions in RBCs, primarily through its antioxidant properties, energy metabolism supporting ability, and celluar membrane stabilizing function. These findings suggest SP as a promising additive for enhancing the quality and safety of stored RBCs.
6.Integration of nuclear and radiation emergency medical treatment in the national emergency medical rescue team
Qiang ZHANG ; Yang LI ; Yan XIA ; Yuwei QI
Chinese Journal of Radiological Health 2025;34(3):433-436
This study aims to address the specificity of nuclear and radiation medical treatment and explore the way to integrate such emergency medical treatment in national emergency medical rescue teams. By analyzing the characteristics of nuclear and radiation medical treatment, as well as the foundation, roles, and development of national emergency medical rescue teams, the study proposes a series of practical and feasible strategies, including professional knowledge training, manpower and material resource assurance, emergency response coordination mechanisms, and psychological health support. These strategies help to compensate for the professional deficiencies of national emergency medical rescue teams in responding to nuclear incidents and enhance their overall comprehensive capabilities, enabling them to better fulfill their responsibilities in health emergency rescue.
7.Chemical and pharmacological research progress on Mongolian folk medicine Syringa pinnatifolia.
Kun GAO ; Chang-Xin LIU ; Jia-Qi CHEN ; Jing-Jing SUN ; Xiao-Juan LI ; Zhi-Qiang HUANG ; Ye ZHANG ; Pei-Feng XUE ; Su-Yi-le CHEN ; Xin DONG ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(8):2080-2089
Syringa pinnatifolia, belonging to the family Oleaceae, is a species endemic to China. It is predominantly distributed in the Helan Mountains region of Inner Mongolia and Ningxia of China. The peeled roots, stems, and thick branches have been used as a distinctive Mongolian medicinal material known as "Shan-chen-xiang", which has effects such as suppressing "khii", clearing heat, and relieving pain and is employed for the treatment of cardiovascular and pulmonary diseases and joint pain. Over the past five years, significant increase was achieved in research on chemical constituents and pharmacological effects. There were a total of 130 new constituents reported, covering sesquiterpenoids, lignans, and alkaloids. Its effects of anti-myocardial ischemia, anti-cerebral ischemia/reperfusion, sedation, and analgesia were revealed, and the mechanisms of agarwood formation were also investigated. To better understand its medical value and potential of clinical application, this review updates the research progress in recent five years focusing on the chemical constituents and pharmacological effects of S. pinnatifolia, providing reference for subsequent research on active ingredient and support for its innovative application in modern medicine system.
Medicine, Mongolian Traditional
;
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Syringa/chemistry*
8.Studies on the best production mode of traditional Chinese medicine driven by artificial intelligence and its engineering application.
Zheng LI ; Ning-Tao CHENG ; Xiao-Ping ZHAO ; Yi TAO ; Qi-Long XUE ; Xing-Chu GONG ; Yang YU ; Jie-Qiang ZHU ; Yi WANG
China Journal of Chinese Materia Medica 2025;50(12):3197-3203
The traditional Chinese medicine(TCM) industry is a crucial part of China's pharmaceutical sector and plays a strategic role in ensuring public health and promoting economic and social development. In response to the practical demand for high-quality development of the TCM industry, this paper focused on the bottlenecks encountered during the digital and intelligent transformation of TCM production systems. Specifically, it explored technical strategies and methodologies for constructing the best TCM production mode. An innovative artificial intelligence(AI)-centered technical architecture for TCM production was proposed, focusing on key aspects of production management including process modeling, state evaluation, and decision optimization. Furthermore, a series of critical technologies were developed to realize the best TCM production mode. Finally, a novel AI-driven TCM production mode characterized by a closed-loop system of "measurement-modeling-decision-execution" was presented through engineering case studies. This study is expected to provide a technological pathway for developing new quality productive forces within the TCM industry.
Artificial Intelligence
;
Drugs, Chinese Herbal
;
Medicine, Chinese Traditional/methods*
;
Humans
9.Effectiveness of Lianhua Qingwen Granule and Jingyin Gubiao Prescription in Omicron BA.2 Infection and Hospitalization: A Real-World Study of 56,244 Cases in Shanghai, China.
Yu-Jie ZHANG ; Guo-Jian LIU ; Han ZHANG ; Chen LIU ; Zhi-Qiang CHEN ; Ji-Shu XIAN ; Da-Li SONG ; Zhi LIU ; Xue YANG ; Ju WANG ; Zhe ZHANG ; Lu-Ying ZHANG ; Hua FENG ; Yan-Qi ZHANG ; Liang TAN
Chinese journal of integrative medicine 2025;31(1):11-18
OBJECTIVE:
To examine the effectiveness of Chinese medicine (CM) Lianhua Qingwen Granule (LHQW) and Jingyin Gubiao Prescription (JYGB) in asymptomatic or mild patients with Omicron infection in the shelter hospital.
METHODS:
This single-center retrospective cohort study was conducted in the largest shelter hospital in Shanghai, China, from April 10, 2022 to May 30, 2022. A total of 56,244 asymptomatic and mild Omicron cases were included and divided into 4 groups, i.e., non-administration group (23,702 cases), LHQW group (11,576 cases), JYGB group (12,112 cases), and dual combination of LHQW and JYGB group (8,854 cases). The length of stay (LOS) in the hospital was used to assess the effectiveness of LHQW and JYGB treatment on Omicron infection.
RESULTS:
Patients aged 41-60 years, with nadir threshold cycle (CT) value of N gene <25, or those fully vaccinated preferred to receive CM therapy. Before or after propensity score matching (PSM), the multiple linear regression showed that LHQW and JYGB treatment were independent influence factors of LOS (both P<0.001). After PSM, there were significant differences in LOS between the LHQW/JYGB combination and the other groups (P<0.01). The results of factorial design ANOVA proved that the LHQW/JYGB combination therapy synergistically shortened LOS (P=0.032).
CONCLUSIONS
Patients with a nadir CT value <25 were more likely to accept CM. The LHQW/JYGB combination therapy could shorten the LOS of Omicron-infected individuals in an isolated environment.
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Male
;
Female
;
Middle Aged
;
Adult
;
China/epidemiology*
;
Hospitalization
;
COVID-19 Drug Treatment
;
COVID-19/epidemiology*
;
SARS-CoV-2
;
Retrospective Studies
;
Treatment Outcome
;
Length of Stay
;
Young Adult
;
Aged
10.Gentiopicroside Alleviates Atherosclerosis by Suppressing Reactive Oxygen Species-Dependent NLRP3 Inflammasome Activation in Vascular Endothelial Cells via SIRT1/Nrf2 Pathway.
Zhu-Qing LI ; Feng ZHANG ; Qi LI ; Li WANG ; Xiao-Qiang SUN ; Chao LI ; Xue-Mei YIN ; Chun-Lei LIU ; Yan-Xin WANG ; Xiao-Yu DU ; Cheng-Zhi LU
Chinese journal of integrative medicine 2025;31(2):118-130
OBJECTIVE:
To evaluate the protective effects of gentiopicroside (GPS) against reactive oxygen species (ROS)-induced NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation in endothelial cells, aiming to reduce atherosclerosis.
METHODS:
Eight-week-old male ApoE-deficient mice were randomly divided into 2 groups (n=10 per group): the vehicle group and the GPS treatment group. Both groups were fed a high-fat diet for 16 weeks. GPS (40 mg/kg per day) was administered by oral gavage to the GPS group, while the vehicle group received an equivalent volume of the vehicle solution. At the end of the treatment, blood and aortic tissues were collected for assessments of atherosclerosis, lipid profiles, oxidative stress, and molecular expressions related to NLRP3 inflammasome activation, ROS production, and apoptosis. Additionally, in vitro experiments on human aortic endothelial cells treated with oxidized low-density lipoprotein (ox-LDL) were conducted to evaluate the effects of GPS on NLRP3 inflammasome activation, pyroptosis, apoptosis, and ROS production, specifically examining the role of the sirtuin 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. SIRT1 and Nrf2 inhibitors were used to confirm the pathway's role.
RESULTS:
GPS treatment significantly reduced atherosclerotic lesions in the en face aorta (P<0.01), as well as in the thoracic and abdominal aortic regions, and markedly decreased sinus lesions within the aortic root (P<0.05 or P<0.01). Additionally, GPS reduced oxidative stress markers and proinflammatory cytokines, including interleukin (IL)-1 β and IL-18, in lesion areas (P<0.05, P<0.01). In vitro, GPS inhibited ox-LDL-induced NLRP3 activation, as evidenced by reduced NLRP3 (P<0.01), apoptosis-associated speck-like protein containing a CARD, cleaved-caspase-1, and cleaved-gasdermin D expressions (all P<0.01). GPS also decreased ROS production, apoptosis, and pyroptosis, with the beneficial effects being significantly reversed by SIRT1 or Nrf2 inhibitors.
CONCLUSION
GPS exerts an antiatherogenic effect by inhibiting ROS-dependent NLRP3 inflammasome activation via the SIRT1/Nrf2 pathway.
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Iridoid Glucosides/therapeutic use*
;
NF-E2-Related Factor 2/metabolism*
;
Animals
;
Atherosclerosis/metabolism*
;
Inflammasomes/drug effects*
;
Male
;
Sirtuin 1/metabolism*
;
Signal Transduction/drug effects*
;
Humans
;
Endothelial Cells/pathology*
;
Mice
;
Oxidative Stress/drug effects*
;
Apoptosis/drug effects*
;
Lipoproteins, LDL
;
Mice, Inbred C57BL

Result Analysis
Print
Save
E-mail