1.Advances in the role of protein post-translational modifications in circadian rhythm regulation.
Zi-Di ZHAO ; Qi-Miao HU ; Zi-Yi YANG ; Peng-Cheng SUN ; Bo-Wen JING ; Rong-Xi MAN ; Yuan XU ; Ru-Yu YAN ; Si-Yao QU ; Jian-Fei PEI
Acta Physiologica Sinica 2025;77(4):605-626
The circadian clock plays a critical role in regulating various physiological processes, including gene expression, metabolic regulation, immune response, and the sleep-wake cycle in living organisms. Post-translational modifications (PTMs) are crucial regulatory mechanisms to maintain the precise oscillation of the circadian clock. By modulating the stability, activity, cell localization and protein-protein interactions of core clock proteins, PTMs enable these proteins to respond dynamically to environmental and intracellular changes, thereby sustaining the periodic oscillations of the circadian clock. Different types of PTMs exert their effects through distincting molecular mechanisms, collectively ensuring the proper function of the circadian system. This review systematically summarized several major types of PTMs, including phosphorylation, acetylation, ubiquitination, SUMOylation and oxidative modification, and overviewed their roles in regulating the core clock proteins and the associated pathways, with the goals of providing a theoretical foundation for the deeper understanding of clock mechanisms and the treatment of diseases associated with circadian disruption.
Protein Processing, Post-Translational/physiology*
;
Circadian Rhythm/physiology*
;
Humans
;
Animals
;
CLOCK Proteins/physiology*
;
Circadian Clocks/physiology*
;
Phosphorylation
;
Acetylation
;
Ubiquitination
;
Sumoylation
2.Exogenous administration of zinc chloride improves lung ischemia/reperfusion injury in rats.
Shu-Yuan WANG ; Jun-Peng XU ; Yuan CHENG ; Man HUANG ; Si-An CHEN ; Zhuo-Lun LI ; Qi-Hao ZHANG ; Yong-Yue DAI ; Li-Yi YOU ; Wan-Tie WANG
Acta Physiologica Sinica 2025;77(5):811-819
The aim of this study was to investigate the contribution of lung zinc ions to pathogenesis of lung ischemia/reperfusion (I/R) injury in rats. Male Sprague Dawley (SD) rats were randomly divided into control group, lung I/R group (I/R group), lung I/R + low-dose zinc chloride group (LZnCl2+I/R group), lung I/R + high-dose ZnCl2 group (HZnCl2+I/R group), lung I/R + medium-dose ZnCl2 group (MZnCl2+I/R group) and TPEN+MZnCl2+I/R group (n = 8 in each group). Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the concentration of zinc ions in lung tissue. The degree of lung tissue injury was analyzed by observing HE staining, alveolar damage index, lung wet/dry weight ratio and lung tissue gross changes. TUNEL staining was used to detect cellular apoptosis in lung tissue. Western blot and RT-qPCR were used to determine the protein expression levels of caspase-3 and ZIP8, as well as the mRNA expression levels of zinc transporters (ZIP, ZNT) in lung tissue. The mitochondrial membrane potential (MMP) of lung tissue was detected by JC-1 MMP detection kit. The results showed that, compared with the control group, the lung tissue damage, lung wet/dry weight ratio and alveolar damage index were significantly increased in the I/R group. And in the lung tissue, the concentration of Zn2+ was markedly decreased, while the cleaved caspase-3/caspase-3 ratio and apoptotic levels were significantly increased. The expression levels of ZIP8 mRNA and protein were down-regulated significantly, while the mRNA expression of other zinc transporters remained unchanged. There was also a significant decrease in MMP. Compared with the I/R group, both MZnCl2+I/R group and HZnCl2+I/R group exhibited significantly reduced lung tissue injury, lung wet/dry weight ratio and alveolar damage index, increased Zn2+ concentration, decreased ratio of cleaved caspase-3/caspase-3 and apoptosis, and up-regulated expression levels of ZIP8 mRNA and protein. In addition, the MMP was significantly increased in the lung tissue. Zn2+ chelating agent TPEN reversed the above-mentioned protective effects of medium-dose ZnCl2 on the lung tissue in the I/R group. The aforementioned results suggest that exogenous administration of ZnCl2 can improve lung I/R injury in rats.
Animals
;
Reperfusion Injury/pathology*
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Chlorides/administration & dosage*
;
Lung/pathology*
;
Zinc Compounds/administration & dosage*
;
Apoptosis/drug effects*
;
Caspase 3/metabolism*
;
Cation Transport Proteins/metabolism*
3.Identification of characteristics, supply channels, and imperial court processing of Arecae Semen in the Qing court.
Feng-Yuan LI ; Hua-Sheng PENG ; Xue-Ling GUAN ; Yan JIN ; Ting YAO ; Yuan YUAN ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(11):2924-2930
Qing court records show that Arecae Semen was extensively applied. The royal medical records of the Qing Dynasty document nine types of Arecae Semen, with the Palace Museum preserving seven kinds, totaling twelve cultural relics. Historical documents and physical artifacts corroborate each other, providing evidence for the study of the supply channels and court processing of Arecae Semen in the Qing court. According to relevant Qing court archival records, the sources of Arecae Semen used in the imperial court were diverse, including tributes from foreign countries such as Vietnam and Gurkha, annual tributes from local governments in Guangdong, gifts from close aides, and commodities purchased by the Imperial Household Department from civilian shops. The imperial physicians of the Qing court placed great emphasis on the specifications of Arecae Semen slices and were extremely meticulous about their processing. The variety of Arecae Semen slices used in the Qing palace exceeded those recorded in the botanical texts of the era. Compared with the commonly used processing methods for Arecae Semen in the Qing Dynasty, the imperial physicians adjusted the properties and efficacy of the herbs through different processing techniques, based on the patient's condition, constitution, and other factors, in order to meet the clinical treatment needs of the court. The slicing of Arecae Semen in the Qing court required strict control of thickness, with an average thickness of 0.44 mm, which is significantly thinner than the Arecae Semen slices found in today's markets. The texture was softer, making them easier to chew and absorb. Both the Qing court Arecae Semen slices and the Muxiang Binglang Pills focused on the use of authentic medicinal materials, ensuring the quality of the medicine and enhancing the efficacy of Arecae Semen through meticulous selection and preparation.
China
;
Drugs, Chinese Herbal/history*
;
Humans
;
Medicine, Chinese Traditional/history*
;
History, 19th Century
;
History, Ancient
;
History, 17th Century
;
History, 18th Century
4.Effects of MTHFR and GGH gene polymorphisms on plasma concentrations and toxicity following high-dose methotrexate therapy in children with acute lymphoblastic leukemia.
Lin-Xiao TENG ; Qi AN ; Lei WANG ; Nan WANG ; Qing-Ling KONG ; Rui HAN ; Yuan WANG ; Lu LIU ; Yan WANG ; Shu-Mei XU ; Kun-Peng SHI ; Fang-Shan QIU ; Xi-Xi DU ; Jin-Rui SHI
Chinese Journal of Contemporary Pediatrics 2025;27(7):802-807
OBJECTIVES:
To investigate the effects of methylenetetrahydrofolate reductase (MTHFR) rs1801133 and γ-glutamyl hydrolase (GGH) rs11545078 gene polymorphisms on plasma concentrations and toxicity following high-dose methotrexate (MTX) therapy in children with acute lymphoblastic leukemia (ALL).
METHODS:
Children with ALL treated at the Xuzhou Children's Hospital of Xuzhou Medical University from January 2021 to April 2024 were selected for this study. Genotypes of MTHFR rs1801133 and GGH rs11545078 were determined using multiplex polymerase chain reaction. MTX plasma concentrations were measured by enzyme-multiplied immunoassay technique, and toxicity was graded according to the Common Terminology Criteria for Adverse Events version 5.0. The relationships between MTHFR rs1801133 and GGH rs11545078 genotypes and both MTX plasma concentrations and associated toxicities were analyzed.
RESULTS:
In the low-risk ALL group, the MTHFR rs1801133 genotype was associated with increased MTX plasma concentrations at 72 hours (P<0.05). In the intermediate- to high-risk group, the MTHFR rs1801133 genotype was associated with increased MTX plasma concentrations at 48 hours (P<0.05), and the GGH rs11545078 genotype was associated with increased MTX plasma concentrations at 48 hours (P<0.05). In the intermediate- to high-risk group, the MTHFR rs1801133 genotype was associated with the occurrence of reduced hemoglobin (P<0.05), and the GGH rs11545078 genotype was associated with the occurrence of thrombocytopenia (P<0.05).
CONCLUSIONS
Detection of MTHFR rs1801133 and GGH rs11545078 genotypes can be used to predict increased MTX plasma concentrations and the occurrence of toxic reactions in high-dose MTX treatment of ALL, enabling timely interventions to enhance safety.
Humans
;
Methotrexate/toxicity*
;
Methylenetetrahydrofolate Reductase (NADPH2)/genetics*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood*
;
Male
;
Female
;
Child
;
Child, Preschool
;
gamma-Glutamyl Hydrolase/genetics*
;
Antimetabolites, Antineoplastic/adverse effects*
;
Infant
;
Polymorphism, Genetic
;
Adolescent
;
Genotype
;
Polymorphism, Single Nucleotide
5.Analysis of Hormone Levels in Patients with Hematological Diseases Before and After Hematopoietic Stem Cell Tansplantation.
Fen LI ; Yu-Jin LI ; Jie ZHAO ; Zhi-Xiang LU ; Xiao-Li GAO ; Hai-Tao HE ; Xue-Zhong GU ; Feng-Yu CHEN ; Hui-Yuan LI ; Qi SA ; Lin ZHANG ; Peng HU
Journal of Experimental Hematology 2025;33(5):1443-1452
OBJECTIVE:
By analyzing the hormone secretion of the adenohypophysis, thyroid glands, gonads, and adrenal cortex in patients with hematological diseases before and after hematopoietic stem cell transplantation (HSCT), this study aims to preliminarily explore the effect of HSCT on patients' hormone secretion and glandular damage.
METHODS:
The baseline data of 209 hematological disease patients who underwent HSCT in our hospital from January 2019 to December 2023, as well as the data on the levels of hormones secreted by the adenohypophysis, thyroid glands, gonads and adrenal cortex before and after HSCT were collected, and the changes in hormone levels before and after transplantation were analyzed.
RESULTS:
After allogeneic HSCT, the levels of thyroid-stimulating hormone (TSH), triiodothyronine (T3), free triiodothyronine (FT3) and estradiol (E2) decreased, while the levels of luteinizing hormone (LH) and follicle- stimulating hormone (FSH) increased. The T3 level of patients with decreased TSH after transplantation was lower than that of those with increased TSH after transplantation. In female patients, the levels of prolactin (PRL), progesterone (Prog), and testosterone (Testo) decreased after HSCT. Testo and PRL decreased when there was a donor-recipient sex mismatch, and the levels of adrenocorticotropic hormone (ACTH) and cortisol (COR) decreased when the HLA matching was haploidentical. The levels of T3, FT3, and PRL decreased after autologous HSCT. In allogeneic HSCT patients, the levels of TSH, T4, T3, FT3, and ACTH in the group with graft-versus-host disease (GVHD) were significantly lower than those in the group without GVHD. Logistic regression analysis showed the changes in hormone levels after transplantation were not correlated with factors such as the patient's sex, age, or whether the blood types of the donor and the recipient are the same.
CONCLUSION
HSCT can affect the endocrine function of patients with hematological diseases, mainly affecting target glandular organs such as the thyroid, gonads, and adrenal glands, while the secretory function of the adenohypophysis is less affected.
Humans
;
Hematopoietic Stem Cell Transplantation
;
Female
;
Male
;
Hematologic Diseases/blood*
;
Follicle Stimulating Hormone/blood*
;
Triiodothyronine/blood*
;
Luteinizing Hormone/blood*
;
Thyroid Gland/metabolism*
;
Estradiol/blood*
;
Thyrotropin/blood*
;
Gonads/metabolism*
;
Adult
;
Middle Aged
;
Adrenocorticotropic Hormone/blood*
;
Hormones/metabolism*
;
Adrenal Cortex/metabolism*
;
Prolactin
6.Shuangshi Tonglin Capsule Improves Prostate Fibrosis through Nrf2/TGF-β1 Signaling Pathways.
Zi-Qiang WANG ; Peng MAO ; Bao-An WANG ; Qi GUO ; Hang LIU ; Yong YUAN ; Chuan WANG ; Ji-Ping LIU ; Xing-Mei ZHU ; Hao WEI
Chinese journal of integrative medicine 2025;31(6):518-528
OBJECTIVE:
To investigate the effect and mechanism of Shuangshi Tonglin Capsules (SSTL) in the treatment of prostate fibrosis (PF).
METHODS:
Human prostate stromal cells (WPMY-1) were used for in vitro experiments to establish PF cell models induced with estradiol (E2). The cell proliferation, migration and clonogenic capacity were determined by cell counting kit-8, scratch assay, and crystal violet staining, respectively. Sprague-Dawley rats were used for in vivo experiments. The changes in histomorphology and organ index of rat prostate by SSTL were determined. Pathologic changes and collagen deposition changes in rat prostate were observed by haematoxylin and eosin (HE) and Masson staining. Enzyme-linked immunosorbent assay kits were used to determine changes in rat PF markers fibroblast growth factor-23 (FGF-23), E2 and prostate specific antigen (PSA). Mechanistically, changes in oxidative stress indicators by SSTL were determined in WPMY-1 cells and PF rats. Then the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) and transforming growth factor-β1 (TGF-β1)/Smad pathway-related proteins as well as Nrf2 and TGF-β1 mRNA were further detected by Western blot or quantitative real-time polymerase chain reaction both in vivo and in vitro.
RESULTS:
In the efficacy study, SSTL significantly reduced the proliferation, migration, and clonogenic ability of cells, improved the morphology of the glandular tissue, significantly reduced the prostate index, reduced glandular fibrous tissue and collagen deposition, and resulted in a significant decrease in the levels of FGF-23, E2 and PSA (P<0.01 or P<0.05). In the mechanistic study, SSTL ameliorated oxidative stress by significantly increasing superoxide dismutase and glutathione peroxidase levels and decreasing malondialdehyde level in WPMY-1 cells and rats (P<0.01 or P<0.05). SSTL significantly elevated the expressions of Nrf2, HO-1, NAD(P)H quinone oxidoreductase 1 (NQO-1), and Smad7 proteins in both cells and rats, and significantly decreased the expressions of TGF-β1, collagen I, α-smooth muscle actin and Smad4 proteins (P<0.01 or P<0.05). SSTL also elevated the content of Nrf2 mRNA and decreased the content of TGF-β1 mRNA in cells and rats (P<0.01 or P<0.05). The Nrf2 inhibitor ML385 was added in in vitro experiments to further validate the pathway relevance.
CONCLUSION
SSTL was effective in improving PF in vivo and in vitro, and its mechanism of action may function through the Nrf2/TGF-β1 signaling pathway.
Male
;
NF-E2-Related Factor 2/metabolism*
;
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Signal Transduction/drug effects*
;
Transforming Growth Factor beta1/metabolism*
;
Rats, Sprague-Dawley
;
Humans
;
Fibrosis
;
Prostate/drug effects*
;
Cell Proliferation/drug effects*
;
Capsules
;
Cell Movement/drug effects*
;
Oxidative Stress/drug effects*
;
Rats
8.Homoharringtonine promotes heart allograft acceptance by enhancing regulatory T cells induction in a mouse model
Xia QIU ; Hedong ZHANG ; Zhouqi TANG ; Yuxi FAN ; Wenjia YUAN ; Chen FENG ; Chao CHEN ; Pengcheng CUI ; Yan CUI ; Zhongquan QI ; Tengfang LI ; Yuexing ZHU ; Liming XIE ; Fenghua PENG ; Tuo DENG ; Xin JIANG ; Longkai PENG ; Helong DAI
Chinese Medical Journal 2024;137(12):1453-1464
Background::Homoharringtonine (HHT) is an effective anti-inflammatory, anti-viral, and anti-tumor protein synthesis inhibitor that has been applied clinically. Here, we explored the therapeutic effects of HHT in a mouse heart transplant model.Methods::Healthy C57BL/6 mice were used to observe the toxicity of HHT in the liver, kidney, and hematology. A mouse heart transplantation model was constructed, and the potential mechanism of HHT prolonging allograft survival was evaluated using Kaplan–Meier analysis, immunostaining, and bulk RNA sequencing analysis. The HHT-T cell crosstalk was modeled ex vivo to further verify the molecular mechanism of HHT-induced regulatory T cells (Tregs) differentiation. Results::HHT inhibited the activation and proliferation of T cells and promoted their apoptosis ex vivo. Treatment of 0.5 mg/kg HHT for 10 days significantly prolonged the mean graft survival time of the allografts from 7 days to 48 days ( P <0.001) without non-immune toxicity. The allografts had long-term survival after continuous HHT treatment for 28 days. HHT significantly reduced lymphocyte infiltration in the graft, and interferon-γ-secreting CD4 + and CD8 + T cells in the spleen ( P <0.01). HHT significantly increased the number of peripheral Tregs (about 20%, P <0.001) and serum interleukin (IL)-10 levels. HHT downregulated the expression of T cell receptor (TCR) signaling pathway-related genes ( CD4, H2-Eb1, TRAT1, and CD74) and upregulated the expression of IL-10 and transforming growth factor (TGF) -β pathway-related genes and Treg signature genes ( CTLA4, Foxp3, CD74, and ICOS). HHT increased CD4 + Foxp3 + cells and Foxp3 expression ex vivo, and it enhanced the inhibitory function of inducible Tregs. Conclusions::HHT promotes Treg cell differentiation and enhances Treg suppressive function by attenuating the TCR signaling pathway and upregulating the expression of Treg signature genes and IL-10 levels, thereby promoting mouse heart allograft acceptance. These findings may have therapeutic implications for organ transplant recipients, particularly those with viral infections and malignancies, which require a more suitable anti-rejection medication.
9.Research status of anti-inflammatory effect of traditional Chinese medicine based on NLRP3 inflammatory body
Fu-Mei XU ; Jun-Yuan ZENG ; Lei ZHAO ; Qi-Li ZHANG ; Peng-Fei XIA ; Yin-Qiang JIA ; Jie WANG ; Peng-Xia FANG ; Yan-Li XU
The Chinese Journal of Clinical Pharmacology 2024;40(6):923-927
Inflammasome is a kind of intracellular polyprotein complex,which is an important component of the complex system of local inflammatory microenvironment after human tissue damage.When the inflammasome is activated,it induces the activation of cysteine aspartate proteinase 1(caspase-1),mediates the maturation and secretion of proinflammatory cytokines,such as interleukin(IL)-1 β and IL-18,and induces cell death,which plays an important role in regulating the host immune response to pathogen infection and tissue repair of cell damage.Nod-like receptor protein 3(NLRP3)inflammatory body,which is composed of NLRP3,pro-cysteine aspartic acid specific protease-1(pro-caspase-1)and apoptosis-related spot-like protein(ASC),is the most deeply and widely studied type of inflammatory body,which plays an important role in the regulation of inflammation.When NLRP3 inflammatory bodies are activated,inflammatory mediators are produced and released,which participate in the occurrence and development of a variety of inflammatory diseases.Some studies have shown that traditional Chinese medicine can improve the pathological state of a variety of diseases by inhibiting NLRP3 inflammatory bodies,and play a role in the prevention and treatment of a variety of inflammatory diseases,including cardiovascular diseases,joint inflammation,diabetes and so on.This paper systematically combs the mechanism of NLRP3 inflammatory bodies,and summarizes the latest research reports on the effects of traditional Chinese medicine compound prescription,traditional Chinese medicine monomers and traditional Chinese medicine extracts on NLRP3 inflammatory bodies in the treatment of inflammatory diseases,in order to provide new ideas for the further study of the pathogenesis and drug treatment of many inflammatory diseases.
10.Pathological mechanism of hypoxia-inducible factor-1α in tumours and the current status of research on Chinese medicine intervention
Yu LIU ; Li-Ying ZHANG ; Guo-Xiong HAO ; Ya-Feng QI ; Qian XU ; Ye-Yuan LIU ; Chao YUAN ; Peng ZHU ; Yong-Qi LIU ; Zhi-Ming ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(11):1670-1674
Traditional Chinese medicine can regulate the hypoxia-inducible factor-1α(HIF-1α)signalling pathway and slow down tumour progression mainly by inhibiting tumour angiogenesis,glycolysis,epithelial mesenchymal transition and other pathological processes.This paper,starting from HIF-1α and related factors,reviews its pathological mechanism in tumours and the research of traditional Chinese medicine interventions with the aim of providing theoretical references for the treatment of tumours with traditional Chinese medicine.

Result Analysis
Print
Save
E-mail