1.Mechanisms of Gut Microbiota Influencing Reproductive Function via The Gut-Gonadal Axis
Ya-Qi ZHAO ; Li-Li QI ; Jin-Bo WANG ; Xu-Qi HU ; Meng-Ting WANG ; Hai-Guang MAO ; Qiu-Zhen SUN
Progress in Biochemistry and Biophysics 2025;52(5):1152-1164
Reproductive system diseases are among the primary contributors to the decline in social fertility rates and the intensification of aging, posing significant threats to both physical and mental health, as well as quality of life. Recent research has revealed the substantial potential of the gut microbiota in improving reproductive system diseases. Under healthy conditions, the gut microbiota maintains a dynamic balance, whereas dysfunction can trigger immune-inflammatory responses, metabolic disorders, and other issues, subsequently leading to reproductive system diseases through the gut-gonadal axis. Reproductive diseases, in turn, can exacerbate gut microbiota imbalance. This article reviews the impact of the gut microbiota and its metabolites on both male and female reproductive systems, analyzing changes in typical gut microorganisms and their metabolites related to reproductive function. The composition, diversity, and metabolites of gut bacteria, such as Bacteroides, Prevotella, and Firmicutes, including short-chain fatty acids, 5-hydroxytryptamine, γ-aminobutyric acid, and bile acids, are closely linked to reproductive function. As reproductive diseases develop, intestinal immune function typically undergoes changes, and the expression levels of immune-related factors, such as Toll-like receptors and inflammatory cytokines (including IL-6, TNF-α, and TGF-β), also vary. The gut microbiota and its metabolites influence reproductive hormones such as estrogen, luteinizing hormone, and testosterone, thereby affecting folliculogenesis and spermatogenesis. Additionally, the metabolism and absorption of vitamins can also impact spermatogenesis through the gut-testis axis. As the relationship between the gut microbiota and reproductive diseases becomes clearer, targeted regulation of the gut microbiota can be employed to address reproductive system issues in both humans and animals. This article discusses the regulation of the gut microbiota and intestinal immune function through microecological preparations, fecal microbiota transplantation, and drug therapy to treat reproductive diseases. Microbial preparations and drug therapy can help maintain the intestinal barrier and reduce chronic inflammation. Fecal microbiota transplantation involves transferring feces from healthy individuals into the recipient’s intestine, enhancing mucosal integrity and increasing microbial diversity. This article also delves into the underlying mechanisms by which the gut microbiota influences reproductive capacity through the gut-gonadal axis and explores the latest research in diagnosing and treating reproductive diseases using gut microbiota. The goal is to restore reproductive capacity by targeting the regulation of the gut microbiota. While the gut microbiota holds promise as a therapeutic target for reproductive diseases, several challenges remain. First, research on the association between gut microbiota and reproductive diseases is insufficient to establish a clear causal relationship, which is essential for proposing effective therapeutic methods targeting the gut microbiota. Second, although gut microbiota metabolites can influence lipid, glucose, and hormone synthesis and metabolism via various signaling pathways—thereby indirectly affecting ovarian and testicular function—more in-depth research is required to understand the direct effects of these metabolites on germ cells or granulosa cells. Lastly, the specific efficacy of gut microbiota in treating reproductive diseases is influenced by multiple factors, necessitating further mechanistic research and clinical studies to validate and optimize treatment regimens.
2.The Role and Mechanism of Circadian Rhythm Regulation in Skin Tissue Regeneration
Ya-Qi ZHAO ; Lin-Lin ZHANG ; Xiao-Meng MA ; Zhen-Kai JIN ; Kun LI ; Min WANG
Progress in Biochemistry and Biophysics 2025;52(5):1165-1178
Circadian rhythm is an endogenous biological clock mechanism that enables organisms to adapt to the earth’s alternation of day and night. It plays a fundamental role in regulating physiological functions and behavioral patterns, such as sleep, feeding, hormone levels and body temperature. By aligning these processes with environmental changes, circadian rhythm plays a pivotal role in maintaining homeostasis and promoting optimal health. However, modern lifestyles, characterized by irregular work schedules and pervasive exposure to artificial light, have disrupted these rhythms for many individuals. Such disruptions have been linked to a variety of health problems, including sleep disorders, metabolic syndromes, cardiovascular diseases, and immune dysfunction, underscoring the critical role of circadian rhythm in human health. Among the numerous systems influenced by circadian rhythm, the skin—a multifunctional organ and the largest by surface area—is particularly noteworthy. As the body’s first line of defense against environmental insults such as UV radiation, pollutants, and pathogens, the skin is highly affected by changes in circadian rhythm. Circadian rhythm regulates multiple skin-related processes, including cyclic changes in cell proliferation, differentiation, and apoptosis, as well as DNA repair mechanisms and antioxidant defenses. For instance, studies have shown that keratinocyte proliferation peaks during the night, coinciding with reduced environmental stress, while DNA repair mechanisms are most active during the day to counteract UV-induced damage. This temporal coordination highlights the critical role of circadian rhythms in preserving skin integrity and function. Beyond maintaining homeostasis, circadian rhythm is also pivotal in the skin’s repair and regeneration processes following injury. Skin regeneration is a complex, multi-stage process involving hemostasis, inflammation, proliferation, and remodeling, all of which are influenced by circadian regulation. Key cellular activities, such as fibroblast migration, keratinocyte activation, and extracellular matrix remodeling, are modulated by the circadian clock, ensuring that repair processes occur with optimal efficiency. Additionally, circadian rhythm regulates the secretion of cytokines and growth factors, which are critical for coordinating cellular communication and orchestrating tissue regeneration. Disruptions to these rhythms can impair the repair process, leading to delayed wound healing, increased scarring, or chronic inflammatory conditions. The aim of this review is to synthesize recent information on the interactions between circadian rhythms and skin physiology, with a particular focus on skin tissue repair and regeneration. Molecular mechanisms of circadian regulation in skin cells, including the role of core clock genes such as Clock, Bmal1, Per and Cry. These genes control the expression of downstream effectors involved in cell cycle regulation, DNA repair, oxidative stress response and inflammatory pathways. By understanding how these mechanisms operate in healthy and diseased states, we can discover new insights into the temporal dynamics of skin regeneration. In addition, by exploring the therapeutic potential of circadian biology in enhancing skin repair and regeneration, strategies such as topical medications that can be applied in a time-limited manner, phototherapy that is synchronized with circadian rhythms, and pharmacological modulation of clock genes are expected to optimize clinical outcomes. Interventions based on the skin’s natural rhythms can provide a personalized and efficient approach to promote skin regeneration and recovery. This review not only introduces the important role of circadian rhythms in skin biology, but also provides a new idea for future innovative therapies and regenerative medicine based on circadian rhythms.
3.Exploration on the relation between tumors and anaphylactic reaction from the perspective of traditional Chinese medicine constitution
Yuhan ZONG ; Huaiyu WANG ; Mengru ZHOU ; Haoyue JIANG ; Luyao JIN ; Xihuan ZHU ; Ji WANG
Journal of Beijing University of Traditional Chinese Medicine 2025;48(2):240-245
The etiology of tumors is complex and influenced by multiple factors, including the host and environmental conditions. Allergy is primarily driven by the immune response of helper T cell 2 (Th2). Research has shown that the Th2 immune response is closely related to tumors, which is specifically manifested through Th2 antibodies, allergy-related effector cells and mediators within the tumors, as well as tumor immune-related functions. This internal interaction mechanism will increase the complexity and challenges associated with the clinical diagnosis and treatment of tumors and allergy. The formation of allergic constitution is shaped by both congenital and acquired factors, and its physical state is closely linked to the occurrence and progression of allergic diseases. Therefore, this paper aims to explore the relationship between tumors and allergic reactions from the perspective of traditional Chinese medicine (TCM) constitution theory. Based on the four basic principles of the TCM constitution, including endowment inheritance theory, environment constraint theory, body-spirit composition theory, and life process theory, this exploration will focus on four aspects: genetic factors and internal disease causes, inflammatory environments and functional regulation, psychological disorders and emotional pathogenesis, as well as age structure and disease risk. Furthermore, from the perspective of constitution-disease relation of chronic disease prevention, this paper will discuss the significant importance of adjusting allergic constitution to improve both subjective symptoms and objective indicators of allergic reactions in tumor patients.
4.The Application of Quantum Dots in Disease Diagnosis and Treatment
Ji-Sheng SHEN ; Li-Li QI ; Jin-Bo WANG ; Zhi-Jian KE ; Qi-Chao WANG
Progress in Biochemistry and Biophysics 2025;52(8):1917-1931
Quantum dots (QDs), nanoscale semiconductor crystals, have emerged as a revolutionary class of nanomaterials with unique optical and electrochemical properties, making them highly promising for applications in disease diagnosis and treatment. Their tunable emission spectra, long-term photostability, high quantum yield, and excellent charge carrier mobility enable precise control over light emission and efficient charge utilization, which are critical for biomedical applications. This article provides a comprehensive review of recent advancements in the use of quantum dots for disease diagnosis and therapy, highlighting their potential and the challenges involved in clinical translation. Quantum dots can be classified based on their elemental composition and structural configuration. For instance, IB-IIIA-VIA group quantum dots and core-shell structured quantum dots are among the most widely studied types. These classifications are essential for understanding their diverse functionalities and applications. In disease diagnosis, quantum dots have demonstrated remarkable potential due to their high brightness, photostability, and ability to provide precise biomarker detection. They are extensively used in bioimaging technologies, enabling high-resolution imaging of cells, tissues, and even individual biomolecules. As fluorescent markers, quantum dots facilitate cell tracking, biosensing, and the detection of diseases such as cancer, bacterial and viral infections, and immune-related disorders. Their ability to provide real-time, in vivo tracking of cellular processes has opened new avenues for early and accurate disease detection. In the realm of disease treatment, quantum dots serve as versatile nanocarriers for targeted drug delivery. Their nanoscale size and surface modifiability allow them to transport therapeutic agents to specific sites, improving drug bioavailability and reducing off-target effects. Additionally, quantum dots have shown promise as photosensitizers in photodynamic therapy (PDT). When exposed to specific wavelengths of light, quantum dots interact with oxygen molecules to generate reactive oxygen species (ROS), which can selectively destroy malignant cells, vascular lesions, and microbial infections. This targeted approach minimizes damage to healthy tissues, making PDT a promising strategy for treating complex diseases. Despite these advancements, the translation of quantum dots from research to clinical application faces significant challenges. Issues such as toxicity, stability, and scalability in industrial production remain major obstacles. The potential toxicity of quantum dots, particularly to vital organs, has raised concerns about their long-term safety. Researchers are actively exploring strategies to mitigate these risks, including surface modification, coating, and encapsulation techniques, which can enhance biocompatibility and reduce toxicity. Furthermore, improving the stability of quantum dots under physiological conditions is crucial for their effective use in biomedical applications. Advances in surface engineering and the development of novel encapsulation methods have shown promise in addressing these stability concerns. Industrial production of quantum dots also presents challenges, particularly in achieving consistent quality and scalability. Recent innovations in synthesis techniques and manufacturing processes are paving the way for large-scale production, which is essential for their widespread adoption in clinical settings. This article provides an in-depth analysis of the latest research progress in quantum dot applications, including drug delivery, bioimaging, biosensing, photodynamic therapy, and pathogen detection. It also discusses the multiple barriers hindering their clinical use and explores potential solutions to overcome these challenges. The review concludes with a forward-looking perspective on the future directions of quantum dot research, emphasizing the need for further studies on toxicity mitigation, stability enhancement, and scalable production. By addressing these critical issues, quantum dots can realize their full potential as transformative tools in disease diagnosis and treatment, ultimately improving patient outcomes and advancing biomedical science.
5.Mechanisms and Molecular Networks of Hypoxia-regulated Tumor Cell Dormancy
Mao ZHAO ; Jin-Qiu FENG ; Ze-Qi GAO ; Ping WANG ; Jia FU
Progress in Biochemistry and Biophysics 2025;52(9):2267-2279
Dormant tumor cells constitute a population of cancer cells that reside in a non-proliferative or low-proliferative state, typically arrested in the G0/G1 phase and exhibiting minimal mitotic activity. These cells are commonly observed across multiple cancer types, including breast, lung, and ovarian cancers, and represent a central cellular component of minimal residual disease (MRD) following surgical resection of the primary tumor. Dormant cells are closely associated with long-term clinical latency and late-stage relapse. Due to their quiescent nature, dormant cells are intrinsically resistant to conventional therapies—such as chemotherapy and radiotherapy—that preferentially target rapidly dividing cells. In addition, they display enhanced anti-apoptotic capacity and immune evasion, rendering them particularly difficult to eradicate. More critically, in response to microenvironmental changes or activation of specific signaling pathways, dormant cells can re-enter the cell cycle and initiate metastatic outgrowth or tumor recurrence. This ability to escape dormancy underscores their clinical threat and positions their effective detection and elimination as a major challenge in contemporary cancer treatment. Hypoxia, a hallmark of the solid tumor microenvironment, has been widely recognized as a potent inducer of tumor cell dormancy. However, the molecular mechanisms by which tumor cells sense and respond to hypoxic stress—initiating the transition into dormancy—remain poorly defined. In particular, the lack of a systems-level understanding of the dynamic and multifactorial regulatory landscape has impeded the identification of actionable targets and constrained the development of effective therapeutic strategies. Accumulating evidence indicates that hypoxia-induced dormancy tumor cells are accompanied by a suite of adaptive phenotypes, including cell cycle arrest, global suppression of protein synthesis, metabolic reprogramming, autophagy activation, resistance to apoptosis, immune evasion, and therapy tolerance. These changes are orchestrated by multiple converging signaling pathways—such as PI3K-AKT-mTOR, Ras-Raf-MEK-ERK, and AMPK—that together constitute a highly dynamic and interconnected regulatory network. While individual pathways have been studied in depth, most investigations remain reductionist and fail to capture the temporal progression and network-level coordination underlying dormancy transitions. Systems biology offers a powerful framework to address this complexity. By integrating high-throughput multi-omics data—such as transcriptomics and proteomics—researchers can reconstruct global regulatory networks encompassing the key signaling axes involved in dormancy regulation. These networks facilitate the identification of core regulatory modules and elucidate functional interactions among key effectors. When combined with dynamic modeling approaches—such as ordinary differential equations—these frameworks enable the simulation of temporal behaviors of critical signaling nodes, including phosphorylated AMPK (p-AMPK), phosphorylated S6 (p-S6), and the p38/ERK activity ratio, providing insights into how their dynamic changes govern transitions between proliferation and dormancy. Beyond mapping trajectories from proliferation to dormancy and from shallow to deep dormancy, such dynamic regulatory models support topological analyses to identify central hubs and molecular switches. Key factors—such as NR2F1, mTORC1, ULK1, HIF-1α, and DYRK1A—have emerged as pivotal nodes within these networks and represent promising therapeutic targets. Constructing an integrative, systems-level regulatory framework—anchored in multi-pathway coordination, omics-layer integration, and dynamic modeling—is thus essential for decoding the architecture and progression of tumor dormancy. Such a framework not only advances mechanistic understanding but also lays the foundation for precision therapies targeting dormant tumor cells during the MRD phase, addressing a critical unmet need in cancer management.
6.Research on the enrollment status of students in Master's Degree Program in Pediatrics in China and the countermeasures
Mingyue WEN ; Xin JIN ; Jinzhong JIA ; Zhisheng LIANG ; Yuexin LI ; Rui ZHU ; Mengquan LIU ; Qi YAN ; Mengting ZHANG ; Zhiqiang WANG
Chinese Journal of Medical Education Research 2024;23(9):1197-1202
Objective:To investigate the enrollment scale and distribution of Master's Degree in Pediatrics programs in China, and to provide a reference for promoting pediatric education and disciplinary development.Methods:Data on colleges and universities authorized to award Master's Degree in Pediatrics in 2023 were collected, sorted, and analyzed for the number, structure, distribution, and enrollment scale and direction of these institutions using descriptive statistics.Results:Among the 117 clinical medicine academic master's degree programs in China, 72 enroll pediatric academic master's degree candidates, with an enrollment of 260 students. Among the 120 master's degree programs in clinical medicine, 104 enroll professional master's degree candidates, enrolling 1 195 students. Enrollment is mainly concentrated in East China, "non-double first-class" colleges and universities, medical colleges and universities with subject level B, and enrollment is carried out in the direction of secondary disciplines.Conclusions:The number of colleges and universities authorized to award Master's Degree in Pediatrics was small, and the distribution of these colleges and universities was unbalanced. The enrollment scale was small and the orientation of Professional Master's Degree was not reasonable. Some colleges and universities were authorized to award Master's Degree in Pediatrics, but did not enroll any students. It is suggested to increase the number of colleges and universities authorized to award Master's Degree in Pediatrics and strengthen the staffing of pediatric departments. The aim is to expand the enrollment scale of candidates for Master's Degree in Pediatrics, improving the differential training of candidates for Academic Master's Degree and Professional Master's Degree, and attach importance to the construction of pediatrics.
7.Impacts of Schisandrin A on proliferation, apoptosis and Hippo-YAP signaling pathway of prostate cancer cell
Fang WANG ; Zhen DING ; Zhu QIAO ; Jin KONG ; Qi MA ; Xiaowei LIU
International Journal of Surgery 2024;51(6):371-376
Objective:To investigate the effects of Schisandrin A on the proliferation and apoptosis of prostate cancer cell and its mechanism.Methods:Human prostate cancer DU145 cell were cultured in vitro and grouped into DU145 group (normal culture), Schisandrin A L group (50 μmol/L Schisandrin A was added), Schisandrin A M group (100 μmol/L Schisandrin A was added), Schisandrin A H group (150 μmol/L Schisandrin A was added) and Simvastatin group (50 μmol/L Simvastatin was added). Cell morphology of each group was observed under microscope, cell proliferation ability was detected by CCK8 method, cell migration ability was detected by cell scratch assay, cell invasion ability was detected by Transwell assay, and cell apoptosis was detected by flow cytometry, the expression of phosphorylation (p) - mammalian STE20-like protein kinase 1 (MST1), MST1, p-large tumor suppressor 1 (LATS1), LATS1, p-Yes associated protein (YAP) and YAP protein were detected by Western blotting. Measurement data were expressed as mean± standard deviation ( ± s), one-way ANOVA for comparisons between multiple groups, and t-test for comparisons between two groups. Results:Compared with DU145 group, the number of cells in Schisandrin A L, M, H groups and Simvastatin group decreased, and the cells gradually shrunk and the spacing became larger, the cell survival rate [(100.00±0.00)%, (88.41±9.36)%, (62.34±7.31)%, (42.57±5.01)%, (45.47±5.65)%], migration [(90.11±13.43)%, (74.16±8.08)%, (57.53±7.34)%, (41.34±6.79)%, (43.44±5.26)%] and invasion [(89.01±10.31)%, (73.11±9.23)%, (55.62±7.67)%, (41.13±6.35)%, (40.36±5.68)%], and the expression of p-YAP/YAP protein (0.98±0.08, 0.83±0.11, 0.69±0.07, 0.55±0.07, 0.53±0.05) were significantly decreased, the apoptosis rate [(2.88±0.34)%, (5.20±0.57)%, (8.37±0.94)%, (12.71±1.58)%, (12.03±2.21)%] and the expression of p-MST1/MST1 (0.41±0.04, 0.53±0.07, 0.75±0.07, 0.89±0.08, 0.88±0.07] and p-LATS1/LATS1 protein (0.40±0.04, 0.52±0.06, 0.64±0.06, 0.77±0.08, 0.79±0.08) were significantly increased, and the differences were statistically significant ( P<0.05). Conclusion:Schisandrin A may inhibit the proliferation of prostate cancer cell and promote cell apoptosis by inhibiting Hippo-YAP signaling pathway.
8.The protective effect of Jujing formula on tretina of mice with dry age-related macular degeneration
Cheng-Cheng QI ; Ruo-Ying FAN ; Xue-Sen WANG ; Shu-Lan SU ; Yue ZHU ; Sheng GUO ; Hong-Jie KANG ; Xue-Yi ZHOU ; Jin-Ao DUAN
Chinese Pharmacological Bulletin 2024;40(7):1358-1367
Aim To investigate the protective effect of Jujing formula on retina of mice with dry age-related macular degeneration(AMD).Methods The mouse model of dry AMD was induced by intraperitoneal in-jection of sodium iodate,and the prognosis was given to the Jujing formula.Retinal thickness was detected by optical coherence tomography(OCT),the retinal morphological changes were observed by hematoxylin-eosin(HE)staining,and the apoptosis of retinal cells was detected by in situ terminal transferase labeling(TUNEL)staining.Combination of tumor necrosis fac-tor-α(TNF-α),interleukin-6(IL-6)and interleukin-1β(IL-1 β)in eyeballs and serum,superoxide dis-mutase(SOD),glutathione(GSH)and malondialde-hyde(MDA)were evaluated to assess the protective effects of Jujing formula on retinal injury in mice with dry AMD.Results The results of OCT,HE and TUNEL staining showed that Jujing formula significant-ly improved the retinal injury induced by sodium iodate in mice with dry AMD,increased the retinal thickness(P<0.05),reduced the apoptosis of retinal cells(P<0.01),and increased the levels of GSH,IL-6 and SOD activity in eyeballs and serum(P<0.01).The levels of TNF-α,IL-6,IL-1β and MDA were reduced(P<0.01).Conclusions Jujing formula has certain therapeutic effects on retinal injury in dry AMD,which may be related to inhibiting inflammatory response and enhancing antioxidant capacity.
9.Screening of a KCNQ potassium channel opener and observation of its antiepileptic activity
Jia LI ; Yuan WANG ; Chao SONG ; Qing-Zhong JIA ; Jin-Long QI
Chinese Pharmacological Bulletin 2024;40(9):1744-1752
Aim To screen out the KCNQ channel o-peners and evaluate the antiepileptic activity.Methods The high throughput screening(HTS)method of Rb+efflux assay was used to identify the active com-pound of KCNQ opener;the preferred compound QO-7 2 was selected to test the pharmacological action in multiple animal models;through the analysis of behav-ioral and EEG,combined with the observation of gener-al pharmacological experiments,the efficacy and safety of the drug were preliminarily evaluated,and the mech-anism was explored.Results By HTS we identified three series compounds with high activity,a total of 51 compounds.In the results,the QO-72 ig or ip in differ-ent doses showed significant anticonvulsant activity in the MES and PTZ induced acute epilepsy models,the anticonvulsant protection rate significantly increased(P<0.05,0.01)and the seizure threshold was signif-icantly extended(P<0.01).In chronic epilepsy model,the seizure ranks and duration significantly de-creased in the QO-72 treatment groups(P<0.01)and the antiepileptic protection rates significantly increased in the higher dose(P<0.01).Compared with PTZ group,the amplitude,seizure wave duration and power density of EEG were reduced significantly in QO-72 treatment groups(P<0.05,0.01).Besides,rotarod,spontaneous activity and cooperative sleep tests of mice by ig at 16 times,ip at 8 times of therapeutic dose had confirmed that the QO-72 had no central side effect.Further mechanism studies were performed on the QO-72 treated animals,the outcomes revealed that there was a significant elevation in GABA(P<0.01)in hippocampus,but there was no significant change in Glu(P>0.05).Conclusions The compound QO-72 shows significant antiepileptic activity in the MES and PTZ models;the mechanism is not only related to o-pening KCNQ channels,but also to increasing the con-tent of inhibitory neurotransmitter GABA in brain.
10.Progress on mechanism of action and neuroprotective effects of notoginsenoside R1
Han-Long WANG ; Yang SUN ; Sha-Sha LIU ; Jun-Peng LONG ; Qian YAN ; Yu-Ting LIN ; Jin-Ping LIANG ; Shi-Feng CHU ; Yan-Tao YANG ; Qi-Di AI ; Nai-Hong CHEN
Chinese Pharmacological Bulletin 2024;40(11):2020-2025
Panax notoginseng is the dried root and rhizome of Panax notoginseng(Burk.)F.H.Chen,a perennial erect herb of the genus Ginseng of the family Wujiaceae.As a traditional Chinese medicine in our country,Panax notoginseng has a good tonic effect,and the Dictionary of Traditional Chinese Medicines has the words that Panax notoginseng is used to tonify the blood,remove the blood stasis and damage,and stop epistaxis.It can also be used to pass the blood and tonify the blood with the best efficacy,and it is the most precious one of the prescription med-icines.Eaten raw,it removes blood stasis and generates new blood,subdues swelling and stabilizes pain,stops bleeding with-out leaving stasis,and promotes blood circulation without hurting the new blood;taken cooked,it can be used to replenish and strengthen the body.Notoginsenoside R1 is a characteristic com-pound in the total saponin of Panax ginseng.In recent years,China's aging has been increasing,and the incidence of neuro-logical disorders has been increasing year by year.Meanwhile,reports on notoginsenoside R1 in the treatment of neurological disorders are increasing,and its neuroprotective effects have been exerted with precise efficacy.The purpose of this paper is to review the treatment of neurological diseases and the mecha-nism of action of notoginsenoside R1,so as to provide a certain theoretical basis for clinical use and new drug development.


Result Analysis
Print
Save
E-mail