1.Chemical consitituents and hypoglycemic activity of Qinhuai No. 1 Rehmannia glutinosa
Meng YANG ; Zhi-you HAO ; Xiao-lan WANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Shi-qi ZHOU ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2025;60(1):205-210
Eight compounds were isolated and purified from the ethyl acetate part of 70% acetone extract of
2.Protective effects and mechanisms of sodium pyruvate on storage lesions in human red blood cells
Haoning CHEN ; Qi MIAO ; Qiang GAO ; Xin SUN ; Shunyu MEI ; Li WANG ; Yun LIAN ; Honglin LUO ; Chenjie ZHOU ; Hao LI
Chinese Journal of Blood Transfusion 2025;38(6):833-838
Objective: To investigate the protective effects and underlying mechanisms of sodium pyruvate (SP) on RBC storage lesions using an oxidative damage model. Methods: Six units of leukocyte-depleted suspended RBCs (discarded for non-infectious reasons within three days post-collection) were randomly assigned to four groups: negative control (NS), positive control (PS), experimental group 1 (SP1), and experimental group 2 (SP2). Oxidative stress was induced in the PS group by the addition of hydrogen peroxide (H
O
), while SP1 and SP2 received SP supplementation at different concentrations (25 mM and 50 mM, respectively) in the presence of H
O
. After 1 hour of incubation, RBC morphology was assessed microscopically, and biochemical indicators including glutathione (GSH), malondialdehyde (MDA), methemoglobin (MetHb), adenosine triphosphate (ATP), and Na
/K
-ATPase activity were measured. Results: RBCs in the PS group exhibited pronounced morphological damage, including cell shrinkage and echinocyte formation, whereas both SP-treated groups showed significantly reduced structural injury. SP treatment led to elevated GSH levels and decreased concentrations of MDA and MetHb, suggesting attenuation of oxidative stress. Additionally, SP enhanced intracellular ATP levels and Na
/K
-ATPase activity, thereby contributing to membrane stability. Notably, the SP2 group (50 mM) demonstrated superior protective effects compared to SP1 (25 mM). Conclusion: Sodium pyruvate effectively attenuates oxidative storage lesions in RBCs, primarily through its antioxidant properties, energy metabolism supporting ability, and celluar membrane stabilizing function. These findings suggest SP as a promising additive for enhancing the quality and safety of stored RBCs.
3.Analysis of The Characteristics of Brain Functional Activity in Gross Motor Tasks in Children With Autism Based on Functional Near-infrared Spectroscopy Technology
Wen-Hao ZONG ; Qi LIANG ; Shi-Yu YANG ; Feng-Jiao WANG ; Meng-Zhao WEI ; Hong LEI ; Gui-Jun DONG ; Ke-Feng LI
Progress in Biochemistry and Biophysics 2025;52(8):2146-2162
ObjectiveBased on functional near-infrared spectroscopy (fNIRS), we investigated the brain activity characteristics of gross motor tasks in children with autism spectrum disorder (ASD) and motor dysfunctions (MDs) to provide a theoretical basis for further understanding the mechanism of MDs in children with ASD and designing targeted intervention programs from a central perspective. MethodsAccording to the inclusion and exclusion criteria, 48 children with ASD accompanied by MDs were recruited into the ASD group and 40 children with typically developing (TD) into the TD group. The fNIRS device was used to collect the information of blood oxygen changes in the cortical motor-related brain regions during single-handed bag throwing and tiptoe walking, and the differences in brain activation and functional connectivity between the two groups of children were analyzed from the perspective of brain activation and functional connectivity. ResultsCompared to the TD group, in the object manipulative motor task (one-handed bag throwing), the ASD group showed significantly reduced activation in both left sensorimotor cortex (SMC) and right secondary visual cortex (V2) (P<0.05), whereas the right pre-motor and supplementary motor cortex (PMC&SMA) had significantly higher activation (P<0.01) and showed bilateral brain region activity; in terms of brain functional integration, there was a significant decrease in the strength of brain functional connectivity (P<0.05) and was mainly associated with dorsolateral prefrontal cortex (DLPFC) and V2. In the body stability motor task (tiptoe walking), the ASD group had significantly higher activation in motor-related brain regions such as the DLPFC, SMC, and PMC&SMA (P<0.05) and showed bilateral brain region activity; in terms of brain functional integration, the ASD group had lower strength of brain functional connectivity (P<0.05) and was mainly associated with PMC&SMA and V2. ConclusionChildren with ASD exhibit abnormal brain functional activity characteristics specific to different gross motor tasks in object manipulative and body stability, reflecting insufficient or excessive compensatory activation of local brain regions and impaired cross-regions integration, which may be a potential reason for the poorer gross motor performance of children with ASD, and meanwhile provides data support for further unraveling the mechanisms underlying the occurrence of MDs in the context of ASD and designing targeted intervention programs from a central perspective.
4.Discussion on AI-Based Digital Upgrade and Application Practice of Laboratory Animal Centers
Tingjun WANG ; Hao LUO ; Qi CHEN
Laboratory Animal and Comparative Medicine 2025;45(4):473-482
Objective In traditional laboratory animal centers, there are issues such as low efficiency in cage scheduling, insufficient supervision of personnel behavior, and difficulty in upgrading aging equipment. This study aims to upgrade the information system of existing laboratory animal centers by applying multimodal large language model technology. This upgrade intends to achieve real-time perception of the status of animal cages, intelligent supervision of experimental personnel behavior, and automated processing of business workflows, thereby improving management efficiency and precision. Methods An AI-based approach for upgrading laboratory animal center informatization was proposed by the First Affiliated Hospital of Zhejiang University School of Medicine,compatible with different breeding equipments. The system architecture, from the bottom up, consisted of three layers: hardware layer, core algorithm layer, and application layer. The hardware layer was equipped with cameras and high-speed network transmission devices for collecting information on cages and personnel. The core algorithm layer utilized multi-stage image preprocessing technology and multimodal large language model recognition technology to extract and identify image information. The application layer integrated the recognition results with the existing information of the animal center to generate real-time cage occupancy heatmaps, which visually and clearly showed the density distribution of cage usage in the laboratory animal center. Results The AI-based management system achieved a cage recognition accuracy of 98.5% and a correct wearing identification rate of laboratory coats of 98.8%. The average image processing time was 3.7 seconds per image, the effective utilization rate of cages increased by 23%, and the turnover efficiency improved by 35%. In addition, the management system could track and warn against non-compliant behaviors in real time. After intelligent recognition, the system detected more violations, with the violation detection rate increasing by 90.6%. After continuous use for three months, the weekly average number of violations decreased by 54.0% compared to the baseline period. Conclusion This study applies multimodal large language model to the field of laboratory animal management, achieving real-time monitoring and automated management of cage identification, thereby improving management efficiency and precision. The system integrates multi-source data such as visual recognition and behavior analysis, establishing a comprehensive intelligent supervision system for experimental personnel. It provides research institutions with efficient, accurate, and cost-effective management tools, promoting the intelligent development of laboratory animal management.
5.Life's Essential 8 cardiovascular health metrics and long-term risk of cardiovascular disease at different stages: A multi-stage analysis.
Jiangtao LI ; Yulin HUANG ; Zhao YANG ; Yongchen HAO ; Qiuju DENG ; Na YANG ; Lizhen HAN ; Luoxi XIAO ; Haimei WANG ; Yiming HAO ; Yue QI ; Jing LIU
Chinese Medical Journal 2025;138(5):592-594
6.Association between cardiovascular-kidney-metabolic health metrics and long-term cardiovascular risk: Findings from the Chinese Multi-provincial Cohort Study.
Ziyu WANG ; Xuan DENG ; Zhao YANG ; Jiangtao LI ; Pan ZHOU ; Wenlang ZHAO ; Yongchen HAO ; Qiuju DENG ; Na YANG ; Lizhen HAN ; Yue QI ; Jing LIU
Chinese Medical Journal 2025;138(17):2139-2147
BACKGROUND:
The American Heart Association (AHA) introduced the concept of cardiovascular-kidney-metabolic (CKM) health and stage, reflecting the interaction among metabolism, chronic kidney disease (CKD), and the cardiovascular system. However, the association between CKM stage and the long-term risk of cardiovascular disease (CVD) has not been validated. This study aimed to evaluate the long-term CVD risk associated with CKM health metrics and CKM stage using data from a population-based cohort study.
METHODS:
In total, 5293 CVD-free participants were followed up to around 13 years in the Chinese Multi-provincial Cohort Study (CMCS). Considering the pathophysiologic progression of CKM health metrics abnormalities (comprising obesity, central adiposity, prediabetes, diabetes, hypertriglyceridemia, CKD, and metabolic syndrome), participants were divided into CKM stages 0, 1, and 2. The time-dependent Cox regression models were used to estimate the cardiovascular risk associated with CKM health metrics and stage. Additionally, broader CVD outcomes were examined, with a specific assessment of the impact of stage 3 in 2581 participants from the CMCS-Beijing subcohort.
RESULTS:
Among participants, 91.2% (4825/5293) had at least one abnormal CKM health metric, 8.8% (468/5293), 13.3% (704/5293), and 77.9% (4121/5293) were in CKM stages 0, 1, and 2, respectively; and 710 incident CVD cases occurred during a median follow-up time of 13.3 years (interquartile range: 12.1 to 13.6 years). Participants with each poor CKM health metric exhibited significantly higher CVD risk. Compared with stage 0, the hazard ratio (HR) (95% confidence interval [CI]) for CVD incidence was 1.31 (0.84-2.04) in stage 1 and 2.27 (1.57-3.28) in stage 2. Significant interactive impacts existed between CKM stage and age or sex, with higher CVD risk related to increased CKM stages in participants aged <60 years or females.
CONCLUSION
These findings highlight the contribution of CKM health metrics and CKM stage to the long-term risk of CVD, suggesting the importance of multi-component recognition and management of poor CKM health in CVD prevention.
Humans
;
Female
;
Male
;
Cardiovascular Diseases/etiology*
;
Middle Aged
;
Adult
;
Cohort Studies
;
Renal Insufficiency, Chronic/metabolism*
;
Aged
;
Risk Factors
;
Metabolic Syndrome/metabolism*
;
China
;
East Asian People
7.Exogenous administration of zinc chloride improves lung ischemia/reperfusion injury in rats.
Shu-Yuan WANG ; Jun-Peng XU ; Yuan CHENG ; Man HUANG ; Si-An CHEN ; Zhuo-Lun LI ; Qi-Hao ZHANG ; Yong-Yue DAI ; Li-Yi YOU ; Wan-Tie WANG
Acta Physiologica Sinica 2025;77(5):811-819
The aim of this study was to investigate the contribution of lung zinc ions to pathogenesis of lung ischemia/reperfusion (I/R) injury in rats. Male Sprague Dawley (SD) rats were randomly divided into control group, lung I/R group (I/R group), lung I/R + low-dose zinc chloride group (LZnCl2+I/R group), lung I/R + high-dose ZnCl2 group (HZnCl2+I/R group), lung I/R + medium-dose ZnCl2 group (MZnCl2+I/R group) and TPEN+MZnCl2+I/R group (n = 8 in each group). Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the concentration of zinc ions in lung tissue. The degree of lung tissue injury was analyzed by observing HE staining, alveolar damage index, lung wet/dry weight ratio and lung tissue gross changes. TUNEL staining was used to detect cellular apoptosis in lung tissue. Western blot and RT-qPCR were used to determine the protein expression levels of caspase-3 and ZIP8, as well as the mRNA expression levels of zinc transporters (ZIP, ZNT) in lung tissue. The mitochondrial membrane potential (MMP) of lung tissue was detected by JC-1 MMP detection kit. The results showed that, compared with the control group, the lung tissue damage, lung wet/dry weight ratio and alveolar damage index were significantly increased in the I/R group. And in the lung tissue, the concentration of Zn2+ was markedly decreased, while the cleaved caspase-3/caspase-3 ratio and apoptotic levels were significantly increased. The expression levels of ZIP8 mRNA and protein were down-regulated significantly, while the mRNA expression of other zinc transporters remained unchanged. There was also a significant decrease in MMP. Compared with the I/R group, both MZnCl2+I/R group and HZnCl2+I/R group exhibited significantly reduced lung tissue injury, lung wet/dry weight ratio and alveolar damage index, increased Zn2+ concentration, decreased ratio of cleaved caspase-3/caspase-3 and apoptosis, and up-regulated expression levels of ZIP8 mRNA and protein. In addition, the MMP was significantly increased in the lung tissue. Zn2+ chelating agent TPEN reversed the above-mentioned protective effects of medium-dose ZnCl2 on the lung tissue in the I/R group. The aforementioned results suggest that exogenous administration of ZnCl2 can improve lung I/R injury in rats.
Animals
;
Reperfusion Injury/pathology*
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Chlorides/administration & dosage*
;
Lung/pathology*
;
Zinc Compounds/administration & dosage*
;
Apoptosis/drug effects*
;
Caspase 3/metabolism*
;
Cation Transport Proteins/metabolism*
8.Construction of Saccharomyces cerevisiae cell factory for efficient biosynthesis of ferruginol.
Mei-Ling JIANG ; Zhen-Jiang TIAN ; Hao TANG ; Xin-Qi SONG ; Jian WANG ; Ying MA ; Ping SU ; Guo-Wei JIA ; Ya-Ting HU ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(4):1031-1042
Diterpenoid ferruginol is a key intermediate in biosynthesis of active ingredients such as tanshinone and carnosic acid.However, the traditional process of obtaining ferruginol from plants is often cumbersome and inefficient. In recent years, the increasingly developing gene editing technology has been gradually applied to the heterologous production of natural products, but the production of ferruginol in microbe is still very low, which has become an obstacle to the efficient biosynthesis of downstream chemicals, such as tanshinone. In this study, miltiradiene was produced by integrating the shortened diterpene synthase fusion protein,and the key genes in the MVA pathway were overexpressed to improve the yield of miltiradiene. Under the shake flask fermentation condition, the yield of miltiradiene reached about(113. 12±17. 4)mg·L~(-1). Subsequently, this study integrated the ferruginol synthase Sm CYP76AH1 and Sm CPR1 to reconstruct the ferruginol pathway and thereby realized the heterologous synthesis of ferruginol in Saccharomyces cerevisiae. The study selected the best ferruginol synthase(Il CYP76AH46) from different plants and optimized the expression of pathway genes through redox partner engineering to increase the yield of ferruginol. By increasing the copy number of diterpene synthase, CYP450, and CPR, the yield of ferruginol reached(370. 39± 21. 65) mg·L~(-1) in the shake flask, which was increased by 21. 57-fold compared with that when the initial ferruginol strain JMLT05 was used. Finally, 1 083. 51 mg·L~(-1) ferruginol was obtained by fed-batch fermentation, which is the highest yield of ferruginol from biosynthesis so far. This study provides not only research ideas for other metabolic engineering but also a platform for the construction of cell factories for downstream products.
Saccharomyces cerevisiae/genetics*
;
Diterpenes/metabolism*
;
Metabolic Engineering
;
Fermentation
;
Abietanes
9.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
10.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires

Result Analysis
Print
Save
E-mail