1.Effect of targeted silencing of DNMT3A on collagen deposition, proliferation and migration activity of mouse lung fibroblasts
Xianchen Wang ; Junbo You ; Hui Ling ; Jiahao Fan ; Qi Chen ; Hui Tao ; Jiming Sha
Acta Universitatis Medicinalis Anhui 2025;60(1):66-72
Objective:
To investigate the effect of targeted silencing of DNA methyltransferase 3A(DNMT3A) on collagen deposition, proliferation and migration activity of mouse lung fibroblasts(PFs).
Methods:
In order to ensure the proliferation and migration activity of primary fibroblasts, the lung tissues of neonatal C57 suckling mice were taken, PFs were extracted after being sheared, and the morphology was observed and identified under the microscope. PFs cells were activated by 5 ng/ml TGF-β1for 24 h after cell attachment, and DNMT3A silencing model was constructed by small interfering RNA; The experiment was divided into control group, TGF-β1group, TGF-β1+ siRNA-NC group and TGF-β1+ siRNA-DNMT3A group. The protein expressions of DNMT3A, α-smooth muscle actin(α-SMA) and Collagen Ⅰ were detected by Western blot; Real time quantitative reverse transcription polymerase chain reaction(RT-qPCR) was used to detect the mRNA expression changes ofDNMT3A,α-SMAandCollagenⅠ. The proliferation ability of PFs was detected by CCK-8 and EdU staining; the migration ability of PFs was detected by scratch test and Transwell migration test.
Results:
Compared with the control group, TGF-β1induced the increase of DNMT3A in the activated PFs cell group(P<0.01), the protein and mRNA levels of fibrosis and proliferation related indicators α-SMA and Collagen Ⅰ also increased(allP<0.05), and the proliferation and migration ability of PFs increased(allP<0.000 1). Compared with the siRNA-NC group, the protein expression levels of DNMT3A(P<0.000 1) and related indicators α-SMA(P<0.01) and Collagen Ⅰ(P<0.01) significantly decreased in the DNMT3A silencing group by Western blot, and the mRNA levels ofDNMT3A,α-SMAandCollagenⅠby RT-qPCR also decreased(allP<0.001), and the proliferation(P<0.01) and migration ability(P<0.05) of PFs cells decreased compared with the control group.
Conclusion
Silencing DNMT3A can inhibit the deposition of collagen and the proliferation of PFs. DNMT3A can promote the proliferation and migration of PFs, and then promote the activation of PFs and the development of pulmonary fibrosis. This process may be regulated by DNA methylation modification.
2.Compatibility and comfort assessment of school desks and chairs in three cities in China
Chinese Journal of School Health 2025;46(3):321-324
Objective:
To understand the subjective and objective comfort evaluations of students from different age groups on desks and chairs, so as to provide reference for standardized allocation and use of desks and chairs.
Methods:
From January to April 2024, a total of 2 446 students were selected from 26 schools in 13 districts (counties/cities) in Shanghai, Tianjin, and Wuxi from Jiangsu Province by using cluster random method, including students in kindergartens, primary schools, junior high schools,senior high schools, colleges and universities. Standardized procedures were used to measure the height and weight of participants, and the matching desks and chairs models were selected according to the height. The subjective comfort of students on matching desks and chairs was investigated, and their objective comfort was evaluated by using a self designed questionnaire. The χ 2 test was used to analyze the differences of subjective perception and objective evaluation in comfort between different types of desks and chairs.
Results:
About 84.1% of the students subjectively thought that large desks and small chairs were very comfortable or relatively comfortable, followed by large desks and chairs (75.7%), and the proportion of small desks and chairs was the lowest among the three types (46.2%), and the difference was statistically significant ( χ 2=722.46, P <0.01). The reporting rates of primary school, junior high school and senior high school students who subjectively considered large desks and chairs to be very comfortable/relatively comfortable were higher than that of other types of desks and chairs, and the differences were statistically significant ( χ 2=297.49, 252.82, 343.67, P <0.01). However, there was no significant difference in the subjective comfort evaluation of different types of desks and chairs among kindergarten children ( χ 2=3.21, P >0.05), and 66.3% of the students in colleges and universities felt very comfortable/relatively comfortable when they used the matching standard desks and chairs. The objective evaluation results of the comfort for the three types of desks and chairs were consistent with the subjective evaluation, but the proportions of the objective evaluation as very comfortable/relatively comfortable were higher than that of the subjective evaluation ( χ 2=20.76- 813.47, P <0.01).
Conclusions
Large desks and chairs, as well as large desks with small chairs are perceived comfortable, while small desks and chairs are perceived less comfortable. It is recommended to match the large desks and chairs or large desks and small chairs that are suitable for them according to the "standard", to promote physical and mental health of students.
3.Therapeutic Study on The Inhibition of Neuroinflammation in Ischemic Stroke by Induced Regulatory T Cells
Tian-Fang KANG ; Ai-Qing MA ; Li-Qi CHEN ; Han GONG ; Jia-Cheng OUYANG ; Fan PAN ; Hong PAN ; Lin-Tao CAI
Progress in Biochemistry and Biophysics 2025;52(4):946-956
ObjectiveNeuroinflammation plays a crucial role in both the onset and progression of ischemic stroke, exerting a significant impact on the recovery of the central nervous system. Excessive neuroinflammation can lead to secondary neuronal damage, further exacerbating brain injury and impairing functional recovery. As a result, effectively modulating and reducing neuroinflammation in the brain has become a key therapeutic strategy for improving outcomes in ischemic stroke patients. Among various approaches, targeting immune regulation to control inflammation has gained increasing attention. This study aims to investigate the role of in vitro induced regulatory T cells (Treg cells) in suppressing neuroinflammation after ischemic stroke, as well as their potential therapeutic effects. By exploring the mechanisms through which Tregs exert their immunomodulatory functions, this research is expected to provide new insights into stroke treatment strategies. MethodsNaive CD4+ T cells were isolated from mouse spleens using a negative selection method to ensure high purity, and then they were induced in vitro to differentiate into Treg cells by adding specific cytokines. The anti-inflammatory effects and therapeutic potential of Treg cells transplantation in a mouse model of ischemic stroke was evaluated. In the middle cerebral artery occlusion (MCAO) model, after Treg cells transplantation, their ability to successfully migrate to the infarcted brain region and their impact on neuroinflammation levels were examined. To further investigate the role of Treg cells in stroke recovery, the changes in cytokine expression and their effects on immune cell interactions was analyzed. Additionally, infarct size and behavioral scores were measured to assess the neuroprotective effects of Treg cells. By integrating multiple indicators, the comprehensive evaluation of potential benefits of Treg cells in the treatment of ischemic stroke was performed. ResultsTreg cells significantly regulated the expression levels of both pro-inflammatory and anti-inflammatory cytokines in vitro and in vivo, effectively balancing the immune response and suppressing excessive inflammation. Additionally, Treg cells inhibited the activation and activity of inflammatory cells, thereby reducing neuroinflammation. In the MCAO mouse model, Treg cells were observed to accumulate in the infarcted brain region, where they significantly reduced the infarct size, demonstrating their neuroprotective effects. Furthermore, Treg cell therapy notably improved behavioral scores, suggesting its role in promoting functional recovery, and increased the survival rate of ischemic stroke mice, highlighting its potential as a promising therapeutic strategy for stroke treatment. ConclusionIn vitro induced Treg cells can effectively suppress neuroinflammation caused by ischemic stroke, demonstrating promising clinical application potential. By regulating the balance between pro-inflammatory and anti-inflammatory cytokines, Treg cells can inhibit immune responses in the nervous system, thereby reducing neuronal damage. Additionally, they can modulate the immune microenvironment, suppress the activation of inflammatory cells, and promote tissue repair. The therapeutic effects of Treg cells also include enhancing post-stroke recovery, improving behavioral outcomes, and increasing the survival rate of ischemic stroke mice. With their ability to suppress neuroinflammation, Treg cell therapy provides a novel and effective strategy for the treatment of ischemic stroke, offering broad application prospects in clinical immunotherapy and regenerative medicine.
4.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.
5.Effects of Cldn14 gene knockout on the formation of calcium oxalate stones in rats and its mechanism
Peiyue LUO ; Liying ZHENG ; Tao CHEN ; Jun ZOU ; Wei LI ; Qi CHEN ; Le CHENG ; Lifeng GAN ; Fangtao ZHANG ; Biao QIAN
Journal of Modern Urology 2025;30(2):168-173
Objective: To explore the effects of Cldn14 gene knockout on renal metabolism and stone formation in rats,so as to provide reference for research in the field of urinary calium metabolism and stone formation. Methods: Cldn14 gene knockout homozygous rats and wild-type rats of the same age were randomly divided into 4 groups:wild-type control (WC) group,wild-type ethylene glycol (WE) group,gene knockout control (KC) group and gene knockout ethylene glycol (KE) group,with 10 rats in each group.The WE and KE groups were induced with ethylene glycol + ammonium chloride to form kidney stones,while the WC and KC groups received normal saline gavage.After 4 weeks of standard maintenance feeding,the urine samples were collected to detect the venous blood.The kidneys were collected for HE,Pizzolatto's staining and transmission electron microscopy.The protein in renal tissues was extracted to detect the expressions of Claudin16 and Claudin19. Results: Crystal deposition was observed in the renal tubular lumen of the WE and the KE groups,and more crystals were detected in the KE group.The WE group had a large number of intracytoplasmic black crystalline inclusions observed in renal tubular epithelial cells under transmission electron microscope,followed by the KE and KC groups.Compared with WC and WE groups,KC and KE groups had significantly decreased serum calcium and magnesium levels but significantly increased urinary calcium level.In addition,the urinary calcium level was higher in the WE group than in the WC group and higher in the KE group than in the KC group.The KE group had lower level of Claudin16,but there was no significant difference in the level of Claudin19 among the 4 groups(P>0.05). Conclusion: Knockout of Cldn14 gene alone cannot effectively reduce urinary calcium excretion or reduce the risk of stone formation in rats,which may be related to the decrease of Claudin16 level.
6.Plasma exchange and intravenous immunoglobulin prolonged the survival of a porcine kidney xenograft in a sensitized, brain-dead human recipient.
Shuaijun MA ; Ruochen QI ; Shichao HAN ; Zhengxuan LI ; Xiaoyan ZHANG ; Guohui WANG ; Kepu LIU ; Tong XU ; Yang ZHANG ; Donghui HAN ; Jingliang ZHANG ; Di WEI ; Xiaozheng FAN ; Dengke PAN ; Yanyan JIA ; Jing LI ; Zhe WANG ; Xuan ZHANG ; Zhaoxu YANG ; Kaishan TAO ; Xiaojian YANG ; Kefeng DOU ; Weijun QIN
Chinese Medical Journal 2025;138(18):2293-2307
BACKGROUND:
The primary limitation to kidney transplantation is organ shortage. Recent progress in gene editing and immunosuppressive regimens has made xenotransplantation with porcine organs a possibility. However, evidence in pig-to-human xenotransplantation remains scarce, and antibody-mediated rejection (AMR) is a major obstacle to clinical applications of xenotransplantation.
METHODS:
We conducted a kidney xenotransplantation in a brain-dead human recipient using a porcine kidney with five gene edits (5GE) on March 25, 2024 at Xijing Hospital, China. Clinical-grade immunosuppressive regimens were employed, and the observation period lasted 22 days. We collected and analyzed the xenograft function, ultrasound findings, sequential protocol biopsies, and immune surveillance of the recipient during the observation.
RESULTS:
The combination of 5GE in the porcine kidney and clinical-grade immunosuppressive regimens prevented hyperacute rejection. The xenograft kidney underwent delayed graft function in the first week, but urine output increased later and the single xenograft kidney maintained electrolyte and pH homeostasis from postoperative day (POD) 12 to 19. We observed AMR at 24 h post-transplantation, due to the presence of pre-existing anti-porcine antibodies and cytotoxicity before transplantation; this AMR persisted throughout the observation period. Plasma exchange and intravenous immunoglobulin treatment mitigated the AMR. We observed activation of latent porcine cytomegalovirus toward the end of the study, which might have contributed to coagulation disorder in the recipient.
CONCLUSIONS
5GE and clinical-grade immunosuppressive regimens were sufficient to prevent hyperacute rejection during pig-to-human kidney xenotransplantation. Pre-existing anti-porcine antibodies predisposed the xenograft to AMR. Plasma exchange and intravenous immunoglobulin were safe and effective in the treatment of AMR after kidney xenotransplantation.
Transplantation, Heterologous/methods*
;
Kidney Transplantation/methods*
;
Heterografts/pathology*
;
Immunoglobulins, Intravenous/administration & dosage*
;
Graft Survival/immunology*
;
Humans
;
Animals
;
Sus scrofa
;
Graft Rejection/prevention & control*
;
Kidney/pathology*
;
Gene Editing
;
Species Specificity
;
Immunosuppression Therapy/methods*
;
Plasma Exchange
;
Brain Death
;
Biopsy
;
Male
;
Aged
7.A Logistic regression analysis of short-term residual symptoms after resolution of benign paroxysmal positional vertigo
Feng LI ; Tao WANG ; Zijiao QI
Journal of Apoplexy and Nervous Diseases 2025;42(3):244-248
Objective To investigate risk factors for short-term residual symptoms after resolution of benign paroxysmal positional vertigo (BPPV) through logistic regression analysis. Methods A total of 110 patients with BPPV in our hospital from July 2020 to January 2023 were enrolled. The patients were grouped according to whether they were cured or had residual symptoms at 8 weeks after repositioning maneuvers. A logistic regression analysis was used to analyze the risk factors for short-term residual symptoms after treatment. Results Forty-nine of the 110 patients had short-term residual symptoms. The univariable logistic regression analyses showed that age, the duration of vertigo before treatment, recurrence, medical history (hypertension, diabetes, and ischemic cerebrovascular disease), anxiety, depression, sleep quality, and vestibular evoked myogenic potential were risk factors for short-term residual symptoms in patients with BPPV. The multivariable logistic regression analysis revealed that age (OR=0.942,95%CI 0.913-0.972,P<0.001), the duration of vertigo before treatment(OR=0.333,95%CI 1.015~1.019,P=0.002),recurrence(OR=0.777,95%CI 0.726-0.832,P<0.001), a history of hypertension(OR=0.682,95%CI 0.624-0.745,P<0.001), a history of diabetes(OR=0.854,95%CI 0.791-0.922,P<0.001),a history of ischemic cerebrovascular disease(OR=0.876,95%CI 0.806-0.953,P=0.002), anxiety(OR=1.158,95%CI 1.046-1.283,P=0.005),depression(OR=1.178,95%CI 1.033-1.344,P=0.014),sleep quality(OR=1.164,95%CI 1.009-1.343,P=0.037), and vestibular evoked myogenic potential(OR=1.196,95%CI 1.068-1.340,P=0.002) were independent risk factors for short-term residual symptoms in patients with BPPV. Conclusion Patients with BPPV are more likely to have short-term residual symptoms if they have a history of hypertension, diabetes, or cerebrovascular diseases, advanced age, a long duration of vertigo before treatment, and the presence of emotional disorders (anxiety, depression, sleep deficiency, vestibular evoked myogenic potential abnormalities).
8.Current status and challenges of development of acupuncture medical devices of TCM.
Renzhong KOU ; Gangqi FAN ; Kaipin GENG ; Qi LIN ; Lamei TAO ; Teng HOU ; Lin WANG
Chinese Acupuncture & Moxibustion 2025;45(7):1019-1026
The paper summarizes the authorized invention patents, device registration and the relevant published articles of acupuncture medical devices of TCM in recent 5 years, and analyzes the current status and challenges in this field. It is discovered that the optimization and substitution in diagnosis and treatment of acupuncture are involved in the development of acupuncture medical devices. The technology application of these devices are composed of traditional and emerging engineering technologies; and the theoretical guidance for their development requires the integration of traditional acupuncture principles with modern medical theories. The development of acupuncture medical devices highlights the characteristics of multidimensional integration, treatment for specific ailments, portability and wearability, painlessness and non-invasion, precision and personalization, as well as intelligent automation. Upon analysis, it is shown that in the development and product transformation of acupuncture medical devices in recent years, the theoretical principles of acupuncture of TCM have not been fully utilized yet, the transformation of patented product is low, the clinical evidence of product is insufficient, and the market competitiveness needs improvement. In the future, The theoretic guidance of acupuncture of TCM should be enhanced in the development of acupuncture medical devices, a production-education- research model with the combination of medicine and engineering be constructed, clinical verification of product be emphasized, and product development paradigms be advanced, so as to meet the demands of the medical market.
Acupuncture Therapy/trends*
;
Humans
;
Medicine, Chinese Traditional/instrumentation*
;
Equipment and Supplies
9.Efficacy and safety of using an enteral immunonutrition formula in the enhanced recovery after surgery protocol for Chinese patients with gastrointestinal cancers undergoing surgery: A randomized, open-label, multicenter trial (healing trial).
Jianchun YU ; Gang XIAO ; Yanbing ZHOU ; Yingjiang YE ; Han LIANG ; Guole LIN ; Qi AN ; Xiaodong LIU ; Bin LIANG ; Baogui WANG ; Weiming KANG ; Tao YU ; Yulong TIAN ; Chao WANG ; Xiaona WANG
Chinese Medical Journal 2025;138(21):2847-2849
10.Disulfiram alleviates cardiac hypertrophic injury by inhibiting TAK1-mediated PANoptosis.
Wei-Dong LI ; Xuan-Yang SHEN ; Xiao-Lu JIANG ; Hong-Fu WEN ; Yuan SHEN ; Mei-Qi ZHANG ; Wen-Tao TAN
Acta Physiologica Sinica 2025;77(2):222-230
The study aims to examine the effects and potential mechanisms of disulfiram (DSF) on cardiac hypertrophic injury, focusing on the role of transforming growth factor-β-activated kinase 1 (TAK1)-mediated pan-apoptosis (PANoptosis). H9C2 cardiomyocytes were treated with angiotensin II (Ang II, 1 µmol/L) to establish an in vitro model of myocardial hypertrophy. DSF (40 µmol/L) was used to treat cardiomyocyte hypertrophic injury models, either along or in combination with the TAK1 inhibitor, 5z-7-oxozeaenol (5z-7, 0.1 µmol/L). We assessed cell damage using propidium iodide (PI) staining, measured cell viability with CCK8 assay, quantified inflammatory factor levels in cell culture media via ELISA, detected TAK1 and RIPK1 binding rates using immunoprecipitation, and analyzed the protein expression levels of key proteins in the TAK1-mediated PANoptosis pathway using Western blot. In addition, the surface area of cardiomyocytes was measured with Phalloidin staining. The results showed that Ang II significantly reduced the cellular viability of H9C2 cardiomyocytes and the binding rate of TAK1 and RIPK1, significantly increased the surface area of H9C2 cardiomyocytes, PI staining positive rate, levels of inflammatory factors [interleukin-1β (IL-1β), IL-18, and tumor necrosis factor α (TNF-α)] in cell culture media and p-TAK1/TAK1 ratio, and significantly up-regulated key proteins in the PANoptosis pathway [pyroptosis-related proteins NLRP3, Caspase-1 (p20), and GSDMD-N (p30), apoptosis-related proteins Caspase-3 (p17), Caspase-7 (p20), and Caspase-8 (p18), as well as necroptosis-related proteins p-MLKL, RIPK1, and RIPK3]. DSF significantly reversed the above changes induced by Ang II. Both 5z-7 and exogenous IL-1β weakened these cardioprotective effects of DSF. These results suggest that DSF may alleviate cardiac hypertrophic injury by inhibiting TAK1-mediated PANoptosis.
Animals
;
MAP Kinase Kinase Kinases/physiology*
;
Rats
;
Myocytes, Cardiac/pathology*
;
Disulfiram/pharmacology*
;
Cardiomegaly
;
Apoptosis/drug effects*
;
Cell Line
;
Angiotensin II
;
Necroptosis/drug effects*
;
Interleukin-1beta/metabolism*
;
Receptor-Interacting Protein Serine-Threonine Kinases/metabolism*
;
Lactones
;
Resorcinols
;
Zearalenone/administration & dosage*


Result Analysis
Print
Save
E-mail