1.Inhibition of HDAC3 Promotes Psoriasis Development in Mice Through Regulating Th17
Fan XU ; Xin-Rui ZHANG ; Yang-Chen XIA ; Wen-Ting LI ; Hao CHEN ; An-Qi QIN ; Ai-Hong ZHANG ; Yi-Ran ZHU ; Feng TIAN ; Quan-Hui ZHENG
Progress in Biochemistry and Biophysics 2025;52(4):1008-1017
ObjectiveTo investigate the influence of histone deacetylase 3 (HDAC3) on the occurrence, development of psoriasis-like inflammation in mice, and the relative immune mechanisms. MethodsHealthy C57BL/6 mice aged 6-8 weeks were selected and randomly divided into 3 groups: control group (Control), psoriasis model group (IMQ), and HDAC3 inhibitor RGFP966-treated psoriasis model group (IMQ+RGFP966). One day prior to the experiment, the back hair of the mice was shaved. After a one-day stabilization period, the mice in Control group was treated with an equal amount of vaseline, while the mice in IMQ group was treated with imiquimod (62.5 mg/d) applied topically on the back to establish a psoriasis-like inflammation model. The mice in IMQ+RGFP966 group received intervention with a high dose of the HDAC3-selective inhibitor RGFP966 (30 mg/kg) based on the psoriasis-like model. All groups were treated continuously for 5 d, during which psoriasis-like inflammation symptoms (scaling, erythema, skin thickness), body weight, and mental status were observed and recorded, with photographs taken for documentation. After euthanasia, hematoxylin-eosin (HE) staining was used to assess the effect of RGFP966 on the skin tissue structure of the mice, and skin thickness was measured. The mRNA and protein expression levels of HDAC3 in skin tissues were detected using reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB), respectively. Flow cytometry was employed to analyze neutrophils in peripheral blood and lymph nodes, CD4+ T lymphocytes, CD8+ T lymphocytes in peripheral blood, and IL-17A secretion by peripheral blood CD4+ T lymphocytes. Additionally, spleen CD4+ T lymphocyte expression of HDAC3, CCR6, CCR8, and IL-17A secretion levels were analyzed. Immunohistochemistry was used to detect the localization and expression levels of HDAC3, IL-17A, and IL-10 in skin tissues. ResultsCompared with the Control group, the IMQ group exhibited significant psoriasis-like inflammation, characterized by erythema, scaling, and skin wrinkling. Compared with the IMQ group, RGFP966 exacerbated psoriasis-like inflammatory symptoms, leading to increased hyperkeratosis. The psoriasis area and severity index (PASI) skin symptom scores were higher in the IMQ group than those in the Control group, and the scores were further elevated in the IMQ+RGFP966 group compared to the IMQ group. Skin thickness measurements showed a trend of IMQ+RGFP966>IMQ>Control. The numbers of neutrophils in the blood and lymph nodes increased sequentially in the Control, IMQ, and IMQ+RGFP966 groups, with a similar trend observed for CD4+ and CD8+ T lymphocytes in the blood. In skin tissues, compared with the Control group, the mRNA and protein levels of HDAC3 decreased in the IMQ group, but RGFP966 did not further reduce these expressions. HDAC3 was primarily located in the nucleus. Compared with the Control group, the nuclear HDAC3 content decreased in the skin tissues of the IMQ group, and RGFP966 further reduced nuclear HDAC3. Compared with the Control and IMQ groups, RGFP966 treatment decreased HDAC3 expression in splenic CD4+ and CD8+ T cells. RGFP966 treatment increased the expression of CCR6 and CCR8 in splenic CD4+ T cells and enhanced IL-17A secretion by peripheral blood and splenic CD4+ T lymphocytes. Additionally, compared with the IMQ group, RGFP966 reduced IL-10 protein levels and upregulated IL-17A expression in skin tissues. ConclusionRGFP966 exacerbates psoriatic-like inflammatory responses by inhibiting HDAC3, increasing the secretion of the cytokine IL-17A, and upregulating the expression of chemokines CCR8 and CCR6.
2.Transcriptome analysis and catechin synthesis genes in different organs of Spatholobus suberectus.
Wei-Qi QIN ; Quan LIN ; Ying LIANG ; Fan WEI ; Gui-Li WEI ; Qi GAO ; Shuang-Shuang QIN
China Journal of Chinese Materia Medica 2025;50(12):3297-3306
To study the differences in transcript levels among different organs of Spatholobus suberectus and to explore the genes encoding enzymes related to the catechin biosynthesis pathway, this study utilized the genome and full-length transcriptome data of S. suberectus as references. Transcriptome sequencing and bioinformatics analysis were performed on five different organs of S. suberectus-roots, stems, leaves, flowers, and fruits-using the Illumina NovaSeq 6000 platform. A total of 115.28 Gb of clean data were obtained, with GC content values ranging from 45.19% to 47.54%, Q20 bases at 94.17% and above, and an overall comparison rate with the reference genome around 90%. In comparisons between the stem and root, stem and leaf, stem and flower, and stem and fruit, 10 666, 9 674, 9 320, and 5 896 differentially expressed genes(DEGs) were identified, respectively. The lowest number of DEGs was found in the stem and root comparison group. KEGG enrichment analysis revealed that the DEGs were mainly concentrated in the pathways of phytohormone signaling, phenylalanine biosynthesis, etc. A total of 39 genes were annotated in the catechin biosynthesis pathway, with at least one highly expressed gene found in all organs. Among these, PAL1, PAL2, C4H1, C4H3, 4CL1, 4CL2, and DFR2 showed high expression in the stems, suggesting that they may play important roles in the biosynthesis of flavonoids in S. suberectus. This study aims to provide important information for the in-depth exploration of the regulation of catechin biosynthesis in S. suberectus through transcriptome analysis of its different organs and to provide a reference for the further realization of S. suberectus varietal improvement and molecular breeding.
Catechin/biosynthesis*
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Fabaceae/metabolism*
;
Transcriptome
;
Flowers/metabolism*
;
Plant Stems/metabolism*
;
Plant Leaves/metabolism*
;
Plant Roots/metabolism*
;
Fruit/metabolism*
3.Clinical application of three-dimensional printing technology combined with customized bone plate in the treatment of acetabulum fracture.
Yan-Chao ZANG ; Quan-Yong ZHAO ; Li YANG ; Jin-Zeng ZUO ; Wei QI ; Wei-Dong LIANG ; Jie XING
China Journal of Orthopaedics and Traumatology 2025;38(2):203-207
OBJECTIVE:
To explore the application value and clinical effect of 3D printing combined with customized bone plate in the treatment of acetabular fracture.
METHODS:
From June 2020 to June 2022, 11 patients with acetabular fractures underwent preoperative planning using 3D printing technology and were treated with customized bone plates including 8 males and 3 females, aged 25 to 66 years old. The fractures were classified according to Letournel-Judet:4 posterior wall fractures, 2 T-type fractures, 2 transverse posterior wall fractures, 2 double column fractures, and 1 anterior column with posterior semi-transverse fractures. The operative time, intraoperative blood loss, intraoperative fluoroscopy times, postoperative drainage volume, postoperative fracture healing time, and hip function score were recorded and analyzed.
RESULTS:
The operation time of 11 patients was 80 to 150 min, intraoperative blood volume was 150 to 700 ml, fluoroscopy frequency was 2 to 6, postoperative drainage flow was 60 to 195 ml, and the fracture healing time was 2.5 to 6.0 months. Fracture reduction was evaluated according to Matta score:anatomical reduction in 3 cases and satisfactory reduction in 8 cases. Eleven patients were followed up for 7 to 18 months. The hip Merle d'Aubigne function scores were excellent in 6 cases, good in 3 cases, fair in 1 case and poor in 1 case. Incision fat liquefaction occurred in 1 case and obturator nerve traction in 1 case.
CONCLUSION
The application of 3D printing technology combined with customized bone plates in the treatment of acetabular fracture is effective. In addition, the printed model can provide the operator with the results of the three-dimensional shape of the fracture, which is convenient for surgical reduction and effectively improves the efficiency of surgery.
Humans
;
Female
;
Male
;
Middle Aged
;
Acetabulum/surgery*
;
Printing, Three-Dimensional
;
Adult
;
Aged
;
Bone Plates
;
Fractures, Bone/surgery*
;
Fracture Fixation, Internal/methods*
4.Transcriptomics and Metabolomics Analysis to Explore the Ferroptosis Susceptibility of Venetoclax-Resistant AML Cells.
Yue LI ; Jia-Qi WAN ; Xin-Tong YANG ; Bao-Quan SONG ; Fei LI ; Hong-Wei PENG
Journal of Experimental Hematology 2025;33(3):621-632
OBJECTIVE:
To investigate the susceptibility of venetoclax-resistant acute myeloid leukemia (AML) cell lines to ferroptosis and to uncover the underlying molecular mechanisms using transcriptomic and metabolomic analysis methods.
METHODS:
Venetoclax-resistant AML cell lines were constructed using a low-dose concentration escalation method. The sensitivity of cells to chemotherapeutic drugs was detected by CCK-8 assay. The susceptibility of drug-resistant cell lines to ferroptosis was assessed using transcriptomic and metabolomic analysis methods. The expression of cellular GPX4 and SLC7A11 protein was detected by Western blot, and cell death and lipid peroxidation levels were measured by flow cytometry. Depmap database and TCGA cohort were applied to explore the effect of ferroptosis-related genes expression on prognosis.
RESULTS:
Venetoclax-resistant cell lines exhibited sensitivity to ferroptosis inducers RSL3, APR246, and sorafenib. The ferroptosis inhibitor Fer-1 partially inhibited cell death induced by these inducers. Compared with the parental cells, significant changes in metabolites and gene expression levels related to ferroptosis were observed in the resistant cell lines. In particular, deregulated expression of SLC7A11 and GPX4 may play critical role in ferroptosis susceptibility. Besides, GPX4 was identified as more important for AML cell survival and higher GPX4 expression may predict shortened overall survival, NPM1 mutant and IDH1 R132 mutation positive patients may prone to possess higher GPX4 expression.
CONCLUSION
Venetoclax-resistant AML cell lines remain susceptible to ferroptosis, higher GPX4 expression maybe a critical marker for poor prognosis. Regulating the expression of ferroptosis-related genes and metabolites may enhance the efficacy of venetoclax and provide new treatment options for AML patients.
Humans
;
Ferroptosis
;
Leukemia, Myeloid, Acute/metabolism*
;
Sulfonamides/pharmacology*
;
Bridged Bicyclo Compounds, Heterocyclic/pharmacology*
;
Drug Resistance, Neoplasm
;
Metabolomics
;
Cell Line, Tumor
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Amino Acid Transport System y+/metabolism*
;
Transcriptome
5.Xuefu Zhuyu Decoction Improves Blood-Brain Barrier Integrity in Acute Traumatic Brain Injury Rats via Regulating Adenosine.
Yang WANG ; Qiu-Ju YAN ; En HU ; Yao WU ; Ruo-Qi DING ; Quan CHEN ; Meng-Han CHENG ; Xi-Ya YANG ; Tao TANG ; Teng LI
Chinese journal of integrative medicine 2025;31(7):624-634
OBJECTIVE:
To explore the neuroprotective effects of Xuefu Zhuyu Decoction (XFZYD) based on in vivo and metabolomics experiments.
METHODS:
Traumatic brain injury (TBI) was induced via a controlled cortical impact (CCI) method. Thirty rats were randomly divided into 3 groups (10 for each): sham, CCI and XFZYD groups (9 g/kg). The administration was performed by intragastric administration for 3 days. Neurological functions tests, histology staining, coagulation and haemorheology assays, and Western blot were examined. Untargeted metabolomics was employed to identify metabolites. The key metabolite was validated by enzyme-linked immunosorbent assay and immunofluorescence.
RESULTS:
XFZYD significantly alleviated neurological dysfunction in CCI model rats (P<0.01) but had no impact on coagulation function. As evidenced by Evans blue and IgG staining, XFZYD effectively prevented blood-brain barrier (BBB) disruption (P<0.05, P<0.01). Moreover, XFZYD not only increased the expression of collagen IV, occludin and zona occludens 1 but also decreased matrix metalloproteinase-9 (MMP-9) and cyclooxygenase-2 (COX-2), which protected BBB integrity (all P<0.05). Nine potential metabolites were identified, and all of them were reversed by XFZYD. Adenosine was the most significantly altered metabolite related to BBB repair. XFZYD significantly reduced the level of equilibrative nucleoside transporter 2 (ENT2) and increased adenosine (P<0.01), which may improve BBB integrity.
CONCLUSIONS
XFZYD ameliorates BBB disruption after TBI by decreasing the levels of MMP-9 and COX-2. Through further exploration via metabolomics, we found that XFZYD may exert a protective effect on BBB by regulating adenosine metabolism via ENT2.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Blood-Brain Barrier/metabolism*
;
Brain Injuries, Traumatic/metabolism*
;
Adenosine/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
Rats
6.RXRα modulates hepatic stellate cell activation and liver fibrosis by targeting CaMKKβ-AMPKα axis.
Lijun CAI ; Meimei YIN ; Shuangzhou PENG ; Fen LIN ; Liangliang LAI ; Xindao ZHANG ; Lei XIE ; Chuanying WANG ; Huiying ZHOU ; Yunfeng ZHAN ; Gulimiran ALITONGBIEKE ; Baohuan LIAN ; Zhibin SU ; Tenghui LIU ; Yuqi ZHOU ; Zongxi LI ; Xiaohui CHEN ; Qi ZHAO ; Ting DENG ; Lulu CHEN ; Jingwei SU ; Luoyan SHENG ; Ying SU ; Ling-Juan ZHANG ; Fu-Quan JIANG ; Xiao-Kun ZHANG
Acta Pharmaceutica Sinica B 2025;15(7):3611-3631
Hepatic stellate cells (HSCs) are the primary fibrogenic cells in the liver, and their activation plays a crucial role in the development and progression of hepatic fibrosis. Here, we report that retinoid X receptor-alpha (RXRα), a unique member of the nuclear receptor superfamily, is a key modulator of HSC activation and liver fibrosis. RXRα exerts its effects by modulating calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ)-mediated activation of AMP-activated protein kinase-alpha (AMPKα). In addition, we demonstrate that K-80003, which binds RXRα by a unique mechanism, effectively suppresses HSC activation, proliferation, and migration, thereby inhibiting liver fibrosis in the CCl4 and amylin liver NASH (AMLN) diet animal models. The effect is mediated by AMPKα activation, promoting mitophagy in HSCs. Mechanistically, K-80003 activates AMPKα by inducing RXRα to form condensates with CaMKKβ and AMPKα via a two-phase process. The formation of RXRα condensates is driven by its N-terminal intrinsic disorder region and requires phosphorylation by CaMKKβ. Our results reveal a crucial role of RXRα in liver fibrosis regulation through modulating mitochondrial activities in HSCs. Furthermore, they suggest that K-80003 and related RXRα modulators hold promise as therapeutic agents for fibrosis-related diseases.
7.Strategy for cysteine-targeting covalent inhibitors screening using in-house database based LC-MS/MS and drug repurposing.
Xiaolan HU ; Jian-Lin WU ; Quan HE ; Zhi-Qi XIONG ; Na LI
Journal of Pharmaceutical Analysis 2025;15(3):101045-101045
Targeted covalent inhibitors, primarily targeting cysteine residues, have attracted great attention as potential drug candidates due to good potency and prolonged duration of action. However, their discovery is challenging. In this research, a database-assisted liquid chromatography-tandem mass spectrometry (LC-MS/MS) strategy was developed to quickly discover potential cysteine-targeting compounds. First, compounds with potential reactive groups were selected and incubated with N-acetyl-cysteine in microsomes. And the precursor ions of possible cysteine-adducts were predicted based on covalent binding mechanisms to establish in-house database. Second, substrate-independent product ions produced from N-acetyl-cysteine moiety were selected. Third, multiple reaction monitoring scan was conducted to achieve sensitive screening for cysteine-targeting compounds. This strategy showed broad applicability, and covalent compounds with diverse structures were screened out, offering structural resources for covalent inhibitors development. Moreover, the screened compounds, norketamine and hydroxynorketamine, could modify synaptic transmission-related proteins in vivo, indicating their potential as covalent inhibitors. This experimental-based screening strategy provides a quick and reliable guidance for the design and discovery of covalent inhibitors.
8.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
9.Intervention of Traditional Chinese Medicine in NLRP3 Signaling Pathway for Prevention and Treatment of Alzheimer's Disease: A Review
Xinyu JIANG ; Yanyan ZHOU ; Qi WANG ; Quan LI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(8):290-298
Alzheimer's disease (AD) is a neurodegenerative disease often characterized by cognitive impairment in clinical practice. The main pathogenesis includes β amyloid protein (Aβ) excessive deposition, neuroinflammatory response, Tau protein hyperphosphorylation, and other factors, and currently only a few chemical drugs have been approved for clinical treatment of AD. The mechanism of action is relatively single, so it is imperative to find new treatment strategies. Traditional Chinese medicine theory believes that the loss of nourishment in the brain and marrow, as well as the loss of vital energy, is the internal mechanisms underlying the occurrence and development of AD, which runs through the entire treatment process. The pathogenesis of AD is closely related to the inflammasome signaling pathway of nucleotide binding oligomerization domain-like receptor protein 3 (NLRP3). Activating the NLRP3 signaling pathway increases neuroinflammatory response, intervenes in microglial polarization, and regulates Aβ sedimentation, cellular autophagy, brain homeostasis, etc. This article takes the NLRP3 signaling pathway as the starting point to sort out and summarize the upstream and downstream targets under the AD mechanism in the past five years, as well as the research on the NLRP3 signal pathway targets with the participation of the relevant traditional Chinese medicine compounds, such as Danggui Shaoyaosan, modified Shuyu Wan, Qingxin Kaiqiao prescription, Kaixin San, Jiedu Yizhi prescription, and modified Buwang San, traditional Chinese medicine monomer extracts, such as silibinin, Lycium barbarum polysaccharides, liquiritigenin, salidroside, baicalin, cinnamaldehyde, betaine, acacetin, and Hericium erinaceus, and acupuncture and moxibustion. It also reviews the latest achievements in the prevention and treatment of AD. This study provides ideas and directions for in-depth research on the prevention and treatment of cognitive dysfunction related diseases with traditional Chinese medicine.
10.Monotropein Induced Apoptosis and Suppressed Cell Cycle Progression in Colorectal Cancer Cells.
Quan GAO ; Lin LI ; Qi-Man ZHANG ; Qin-Song SHENG ; Ji-Liang ZHANG ; Li-Jun JIN ; Rui-Yan SHANG
Chinese journal of integrative medicine 2024;30(1):25-33
OBJECTIVE:
To determine whether monotropein has an anticancer effect and explore its potential mechanisms against colorectal cancer (CRC) through network pharmacology and molecular docking combined with experimental verification.
METHODS:
Network pharmacology and molecular docking were used to predict potential targets of monotropein against CRC. Cell counting kit assay, plate monoclonal assay and microscopic observation were used to investigate the antiproliferative effects of monotropein on CRC cells HCT116, HT29 and LoVo. Flow cytometry and scratch assay were used to analyze apoptosis and cell cycle, as well as cell migration, respectively in HCT116, HT29, and LoVo cells. Western blotting was used to detect the expression of proteins related to apoptosis, cell cycle, and cell migration, and the expression of proteins key to the Akt pathway.
RESULTS:
The Gene Ontology and Reactome enrichment analyses indicated that the anticancer potential of monotropein against CRC might be involved in multiple cancer-related signaling pathways. Among these pathways, RAC-beta serine/threonine-protein kinase (Akt1, Akt2), cyclin-dependent kinase 6 (CDK6), matrix metalloproteinase-9 (MMP9), epidermal growth factor receptor (EGFR), cell division control protein 42 homolog (CDC42) were shown as the potential anticancer targets of monotropein against CRC. Molecular docking suggested that monotropein may interact with the 6 targets (Akt1, Akt2, CDK6, MMP9, EGFR, CDC42). Subsequently, cell activity of HCT116, HT29 and LoVo cell lines were significantly suppressed by monotropein (P<0.05). Furthermore, our research revealed that monotropein induced cell apoptosis by inhibiting Bcl-2 and increasing Bax, induced G1-S cycle arrest in colorectal cancer by decreasing the expressions of CyclinD1, CDK4 and CDK6, inhibited cell migration by suppressing the expressions of CDC42 and MMP9 (P<0.05), and might play an anticancer role through Akt signaling pathway.
CONCLUSION
Monotropein exerts its antitumor effects primarily by arresting the cell cycle, causing cell apoptosis, and inhibiting cell migration. This indicates a high potential for developing novel medication for treating CRC.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cell Proliferation
;
Matrix Metalloproteinase 9
;
Molecular Docking Simulation
;
Cell Cycle
;
ErbB Receptors
;
Apoptosis
;
Colorectal Neoplasms/pathology*
;
Cell Line, Tumor

Result Analysis
Print
Save
E-mail