1.FER-1 inhibits methylglyoxal-induced ferroptosis in mouse alveolar macrophages in vitro.
Qi ZHANG ; Zezhao JI ; Abai JIASHAER ; Youda WANG ; ABUDUXUKUER ABULIMITI
Journal of Southern Medical University 2024;44(12):2443-2448
OBJECTIVES:
To investigate the inhibitory effect of FER-1 on methylglyoxal-induced ferroptosis in cultured mouse alveolar macrophages.
METHODS:
MH-S cells derived from mouse alveolar macrophages treated with 90 μg/mL methylglyoxal, 10 μmol/mL FER-1MG+FER-1, or both were examined for intracellular reactive oxygen species (ROS), malondialdehyde (MDA) and ferrous ion (Fe2+) levels and changes in mitochondrial membrane potential. Western blotting was performed to detect the protein expression levels of glutathione peroxidase 4 (GPX4) and long-chain acyl-CoA synthase 4 (ACSL4).
RESULTS:
Methylglyoxal treatment of MH-S cells for 24 h significantly decreased the protein expression level of GPX4, upregulated the protein expression of ACSL4, increased intracellular concentrations of ferrous ions, ROS and MDA, caused loss of mitochondrial membrane potential, and decreased cell viability. Treatment of the cells with FER-1 effectively attenuated these detrimental effects of methylglyoxal in MH-S cells by increasing GPX4 expression, reducing ACSL4 expression and intracellular ferrous ions, ROS and MDA levels, and restoring the mitochondrial membrane potential.
CONCLUSIONS
Methylglyoxal can induce ferroptosis in MH-S cells in a dose-dependent manner, and FER-1 can rescue the cells from methylglyoxal-induced ferroptosis.
Animals
;
Ferroptosis/drug effects*
;
Mice
;
Pyruvaldehyde
;
Macrophages, Alveolar/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism*
;
Membrane Potential, Mitochondrial/drug effects*
;
Coenzyme A Ligases/metabolism*
;
Malondialdehyde/metabolism*
;
Cell Survival/drug effects*
2.Role of interaction between reactive oxygen species and ferroptosis pathway in methylglyoxal-induced injury in mouse embryonic osteoblasts.
Yuan Yi FENG ; Dong Mei YANG ; Xi Mei ZHI ; Hai Ou DENG ; Wei Jie ZHANG ; Rui Xue WANG ; Wen WU
Journal of Southern Medical University 2022;42(1):108-115
OBJECTIVE:
To explore the interaction between reactive oxygen species (ROS) and ferroptosis in methylglyoxalinduced injury of mouse embryonic osteoblasts (MC3T3-E1 cells).
METHODS:
MC3T3-E1 cells were treated with methylglyoxal to establish a cell model of diabetic osteoporosis. CCK-8 assay was used to detect the viability of MC3T3-E1 cells. Rhodamine 123 staining followed by photofluorography was used to examine mitochondrial membrane potential (MMP). The intracellular ROS level was detected by 2', 7'-dichlorodihydrofluorescein diacetate staining with photofluorograph. Alkaline phosphatase (ALP) activity in the cells was detected using an ALP kit, the number of mineralized nodules was determined with alizarin red S staining, and the level of iron ions was detected using a detection kit. The expression level of glutathione peroxidase 4 (GPX4, a marker protein that inhibits ferroptosis) in the osteoblasts was determined using Western blotting.
RESULTS:
Treatment of MC3T3-E1 cells with 0.6 mmol/L methylglyoxal for 24 h significantly inhibited the expression level of GPX4 (P < 0.001), increased intracellular iron ion concentration, decreased the cell viability, increased the loss of MMP and intracellular ROS level, decreased both ALP activity and the number of mineralized nodules in the cells (P < 0.001). Co-treatment of MC3T3-E1 cells with 2 mmol/L N-acetylcysteine (NAC, a ROS scavenger) and methylglyoxal significantly increased the expression level of GPX4 (P < 0.01); co-treatment with 4 mmo/L FER-1 (a ferroptosis inhibitor) and methylglyoxal obviously decreased the intracellular ROS level (P < 0.001). Co-treatment of the cells either with NAC and methylglyoxal or with FER-1 and methylglyoxal attenuated methylglyoxal-induced injuries in the osteoblasts (P < 0.001).
CONCLUSION
The interaction between ROS and ferroptosis pathway plays an important role in methylglyoxal-induced injury of mouse embryonic osteoblasts.
Animals
;
Cell Survival
;
Ferroptosis
;
Mice
;
Osteoblasts
;
Pyruvaldehyde/metabolism*
;
Reactive Oxygen Species/metabolism*
3.Screening for active components of Sophorae Flos on inhibiting AGEs formation based on non-enzymatic glycation reaction.
Nan JIANG ; Fu-Jing WANG ; Liang FENG ; Xiao-Bin JIA
China Journal of Chinese Materia Medica 2019;44(14):3100-3106
Sugar-poison caused blood-heat is the pathological basis of many complications of diabetes. Advanced glycation end products( AGEs) are considered as the potential glycotoxic factor that can cause blood-heat. Sophorae Flos hold the effect of removing pathogenic heat from blood. In this study,chromatographic non-enzymatic glycation reaction system of bovine serum albumin( BSA)/methylglyoxal( MGO) and Sophorae Flos was established to identify active components in Sophorae Flos inhibiting AGEs formation. The HPLC was used to analyze chromatograms before and after the incubation of Sophorae Flos and methylglyoxal. Changes of chromatographic peaks of eight compounds was found. It is speculated that this change may be due to new substance produced by the reaction of active components in Sophorae Flos and methylglyoxal,and these active components may be flavonoid component rutin. Further investigation for the effects of rutin and MGO reaction( 1 ∶ 1,1 ∶ 3,3 ∶ 1) for 6 days on the formation of AGEs was performed. The results showed that the inhibition activity of rutin on AGEs production was most obvious when the reaction ratio was 1 ∶3,and the most inhibition was in 24 h and stabilized after 3 d. The product of the reaction of rutin with MGO was identified by LC-ESI-MS/MS,which indicated that the newly formed seven substances were the mono-and di-MGO adducts of rutin. This study showed that rutin is the active component on Sophorae Flos for removing pathogenic heat from blood by forming new compounds to inhibit the formation of sugar poison products,which provides reference for rational application of Sophorae Flos.
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal
;
analysis
;
Flowers
;
chemistry
;
Glycation End Products, Advanced
;
antagonists & inhibitors
;
Pyruvaldehyde
;
Rutin
;
chemistry
;
Sophora
;
chemistry
;
Tandem Mass Spectrometry
4.Effect of Manuka Honey on Transforming Growth Factor Beta-1-Induced Extracelluar Matrix Production in Nasal Polyp Derived Fibroblasts
Bu Kwan KIL ; Bo Mun KIM ; Byung Jun KANG ; Mi Kyung YE ; Seung Heon SHIN
Korean Journal of Otolaryngology - Head and Neck Surgery 2019;62(6):336-342
BACKGROUND AND OBJECTIVES: Manuka honey has anti-microbial, anti-inflammatory, and anti-proliferative action with a high concentration of methylglyoxal compound. It is also effective in killing Staphylococcus aureus biofilm and effective for the acute exacerbation of chronic rhinosinusitis. The aim of this study was to determine the anti-fibrotic effect of manuka honey in nasal polyp fibroblasts. MATERIALS AND METHOD: Primary nasal fibroblasts were isolated from nasal polyps and treated with transforming growth factor-beta 1 (TGF-β1). To determine the anti-fibrotic effect of manuka honey, fibroblasts were pre-treated with various concentration of the honey. Reverse transcription-polymerase chain reaction and western blot analysis were then performed to determine α-smooth muscle actin (α-SMA), collagen type I, and matrix metalloproteinase-9 (MMP-9) messenger ribonucleic acid (mRNA) expression and protein production in nasal polyp fibroblasts. Phosphorylated Smad (pSmad) 2/3 and phosphorylated adenosine monophosphate-activated protein kinase (pAMPK) were then determined by western blotting. RESULTS: TGF-β1 stimulation increased α-SMA, collagen type I, and MMP-9 mRNA expression and protein production in nasal polyp fibroblasts. Manuka honey effectively suppressed α-SMA, collagen type I, and MMP-9 mRNA expression and protein production. Its inhibitory role on TGF-β1 induced myofibroblast differentiation and its extracellular matrix production was associated with Smad2/3 and AMPK pathway. CONCLUSION: Manuka honey can inhibit TGF-β1 induced myofibroblast differentiation, collagen type I, and MMP-9 production in nasal fibroblasts. These results suggest that manuka honey might be a useful candidate for the inhibition of nasal polyp formation if further studies in vivo were accompanied.
Actins
;
Adenosine
;
AMP-Activated Protein Kinases
;
Biofilms
;
Blotting, Western
;
Collagen Type I
;
Extracellular Matrix
;
Fibroblasts
;
Homicide
;
Honey
;
Matrix Metalloproteinase 9
;
Methods
;
Myofibroblasts
;
Nasal Polyps
;
Protein Kinases
;
Pyruvaldehyde
;
RNA
;
RNA, Messenger
;
Staphylococcus aureus
;
Transforming Growth Factor beta
;
Transforming Growth Factors
5.Hypericin, a Naphthodianthrone Derivative, Prevents Methylglyoxal-Induced Human Endothelial Cell Dysfunction.
Biomolecules & Therapeutics 2017;25(2):158-164
Methylglyoxal (MGO) is a highly reactive metabolite of glucose which is known to cause damage and induce apoptosis in endothelial cells. Endothelial cell damage is implicated in the progression of diabetes-associated complications and atherosclerosis. Hypericin, a naphthodianthrone isolated from Hypericum perforatum L. (St. John’s Wort), is a potent and selective inhibitor of protein kinase C and is reported to reduce neuropathic pain. In this work, we investigated the protective effect of hypericin on MGO-induced apoptosis in human umbilical vein endothelial cells (HUVECs). Hypericin showed significant anti-apoptotic activity in MGO-treated HUVECs. Pretreatment with hypericin significantly inhibited MGO-induced changes in cell morphology, cell death, and production of intracellular reactive oxygen species. Hypericin prevented MGO-induced apoptosis in HUVECs by increasing Bcl-2 expression and decreasing Bax expression. MGO was found to activate mitogen-activated protein kinases (MAPKs). Pretreatment with hypericin strongly inhibited the activation of MAPKs, including P38, JNK, and ERK1/2. Interestingly, hypericin also inhibited the formation of AGEs. These findings suggest that hypericin may be an effective regulator of MGO-induced apoptosis. In conclusion, hypericin downregulated the formation of AGEs and ameliorated MGO-induced dysfunction in human endothelial cells.
Apoptosis
;
Atherosclerosis
;
Cell Death
;
Endothelial Cells*
;
Glucose
;
Glycosylation End Products, Advanced
;
Human Umbilical Vein Endothelial Cells
;
Humans*
;
Hypericum
;
Mitogen-Activated Protein Kinases
;
Neuralgia
;
Protein Kinase C
;
Pyruvaldehyde
;
Reactive Oxygen Species
6.Rapid Identification of Methylglyoxal Trapping Constituents from Onion Peels by Pre-column Incubation Method.
Ji Hoon KIM ; Myeong Il KIM ; Ahmed Shah SYED ; Kiwon JUNG ; Chul Young KIM
Natural Product Sciences 2017;23(4):247-252
The methylglyoxal (MGO) trapping constituents from onion (Allium cepa L.) peels were investigated using pre-column incubation of MGO and crude extract followed by HPLC analysis. The peak areas of MGO trapping compounds decreased, and their chemical structures were identified by HPLC-ESI/MS. Among major constituents in outer scale of onion, 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone (2) was more effective MGO scavenger than quercetin (6) and its 4′-glucoside, spiraeoside (3). After 1 h incubation, compound 2 trapped over 90% MGO at a concentration of 0.5 mM under physiological conditions, but compounds 3 and 6 scavenged 45%, 16% MGO, respectively. HPLC-ESI/MS showed that compound 2 trapped two molecules of MGO to form a di-MGO adduct and compounds 3 and 6 captured one molecule of MGO to form mono-MGO adducts, and the positions 6 and 8 of the A ring of flavonoids were major active sites for trapping MGO.
Catalytic Domain
;
Chromatography, High Pressure Liquid
;
Flavonoids
;
Methods*
;
Onions*
;
Pyruvaldehyde*
;
Quercetin
7.No short-term effects of calorie-controlled Mediterranean or fast food dietary interventions on established biomarkers of vascular or metabolic risk in healthy individuals.
Marijo PARCINA ; Maik BRUNE ; Vareska KAESE ; Markus ZORN ; Rainer SPIEGEL ; Valerija VOJVODA ; Thomas FLEMING ; Gottfried RUDOFSKY ; Peter PAUL NAWROTH
Nutrition Research and Practice 2015;9(2):165-173
BACKGROUND/OBJECTIVES: This study addressed the question whether the composition of supposedly 'healthy' or 'unhealthy' dietary regimes has a calorie-independent short-term effect on biomarkers of metabolic stress and vascular risk in healthy individuals. SUBJECTS/METHODS: Healthy male volunteers (age 29.5 +/- 5.9 years, n = 39) were given a standardized baseline diet for two weeks before randomization into three groups of different dietary regimes: fast food, Mediterranean and German cooking style. Importantly, the amount of calories consumed per day was identical in all three groups. Blood samples were analyzed for biomarkers of cardiovascular risk and metabolic stress after two weeks of the baseline diet and after two weeks of the assigned dietary regime. RESULTS: No dietary intervention affected the metabolic or cardiovascular risk profile when compared in-between groups or compared to baseline. Subjects applied to the Mediterranean diet showed a statistically significant increase of uric acid compared to baseline and compared to the German diet group. Plasma concentrations of urea were significantly higher in both the fast food group and the Mediterranean group, when compared to baseline and compared to the German diet group. No significant differences were detected for the levels of vitamins, trace elements or metabolic stress markers (8-hydroxy-2-deoxyguanosine, malondialdehyde and methylglyoxal, a potent glycating agent). Established parameters of vascular risk (e.g. LDL-cholesterol, lipoprotein(a), homocysteine) were not significantly changed in-between groups or compared to baseline during the intervention period. CONCLUSIONS: The calorie-controlled dietary intervention caused neither protective nor harmful short-term effects regarding established biomarkers of vascular or metabolic risk. When avoiding the noxious effects of overfeeding, healthy individuals can possess the metabolic capacity to compensate for a potentially disadvantageous composition of a certain diet.
Biomarkers*
;
Cooking
;
Diet
;
Diet, Mediterranean
;
Fast Foods*
;
Humans
;
Lipoprotein(a)
;
Male
;
Malondialdehyde
;
Oxidative Stress
;
Plasma
;
Pyruvaldehyde
;
Random Allocation
;
Stress, Physiological
;
Trace Elements
;
Urea
;
Uric Acid
;
Vitamins
;
Volunteers
8.No short-term effects of calorie-controlled Mediterranean or fast food dietary interventions on established biomarkers of vascular or metabolic risk in healthy individuals.
Marijo PARCINA ; Maik BRUNE ; Vareska KAESE ; Markus ZORN ; Rainer SPIEGEL ; Valerija VOJVODA ; Thomas FLEMING ; Gottfried RUDOFSKY ; Peter PAUL NAWROTH
Nutrition Research and Practice 2015;9(2):165-173
BACKGROUND/OBJECTIVES: This study addressed the question whether the composition of supposedly 'healthy' or 'unhealthy' dietary regimes has a calorie-independent short-term effect on biomarkers of metabolic stress and vascular risk in healthy individuals. SUBJECTS/METHODS: Healthy male volunteers (age 29.5 +/- 5.9 years, n = 39) were given a standardized baseline diet for two weeks before randomization into three groups of different dietary regimes: fast food, Mediterranean and German cooking style. Importantly, the amount of calories consumed per day was identical in all three groups. Blood samples were analyzed for biomarkers of cardiovascular risk and metabolic stress after two weeks of the baseline diet and after two weeks of the assigned dietary regime. RESULTS: No dietary intervention affected the metabolic or cardiovascular risk profile when compared in-between groups or compared to baseline. Subjects applied to the Mediterranean diet showed a statistically significant increase of uric acid compared to baseline and compared to the German diet group. Plasma concentrations of urea were significantly higher in both the fast food group and the Mediterranean group, when compared to baseline and compared to the German diet group. No significant differences were detected for the levels of vitamins, trace elements or metabolic stress markers (8-hydroxy-2-deoxyguanosine, malondialdehyde and methylglyoxal, a potent glycating agent). Established parameters of vascular risk (e.g. LDL-cholesterol, lipoprotein(a), homocysteine) were not significantly changed in-between groups or compared to baseline during the intervention period. CONCLUSIONS: The calorie-controlled dietary intervention caused neither protective nor harmful short-term effects regarding established biomarkers of vascular or metabolic risk. When avoiding the noxious effects of overfeeding, healthy individuals can possess the metabolic capacity to compensate for a potentially disadvantageous composition of a certain diet.
Biomarkers*
;
Cooking
;
Diet
;
Diet, Mediterranean
;
Fast Foods*
;
Humans
;
Lipoprotein(a)
;
Male
;
Malondialdehyde
;
Oxidative Stress
;
Plasma
;
Pyruvaldehyde
;
Random Allocation
;
Stress, Physiological
;
Trace Elements
;
Urea
;
Uric Acid
;
Vitamins
;
Volunteers
9.Methylglyoxal inhibits human umbilical vein cell migration in vitro by down-regulating integrinβ3.
Ning-Bo PANG ; Li-Qun WANG ; Jian-Bo WU
Journal of Southern Medical University 2015;35(10):1395-1399
OBJECTIVETo explore the effects of methylglyoxal on endothelia cell migration.
METHODSHuman umbilical vein endothelial cells (HUVECs) were stimulated by serial concentrations of methylglyoxal (MGO, 0, 25, 50, 100 and 200 µmol/L) for 24 h, and the cell migration was assessed by scratch wound and Transwell assay. The expression of integrin β3 in the treated cells was examined by immunoblotting, and the effect of an anti-β3 antibody, LM609, on cell migration was investigated.
RESULTSMethylglyoxal significantly inhibited HUVEC migration in a concentration-dependent manner (P<0.05). Methylglyoxal decreased the expression of integrin β3 in a time- and concentration-dependent manner (P<0.05). LM609 also significantly inhibited HUVEC migration (P<0.05).
CONCLUSIONMethylglyoxal inhibits HUVEC migration in vitro by down-regulating integrin β3 expression.
Cell Movement ; drug effects ; Cells, Cultured ; Down-Regulation ; Human Umbilical Vein Endothelial Cells ; drug effects ; metabolism ; Humans ; Integrin beta3 ; metabolism ; Pyruvaldehyde ; pharmacology
10.Aminoguanidine suppresses methylglyoxal-mediated oxygen-glucose deprivation injury in human brain microvascular endothelial cells.
Wenlu LI ; Quan HU ; Xia REN ; Ping HE ; Huimin XU ; Haibin DAI ; Zhong CHEN
Journal of Zhejiang University. Medical sciences 2013;42(3):261-266
OBJECTIVETo evaluate the effects of aminoguanidine on methylglyoxal-mediated oxygen-glucose deprivation (OGD) injury in the cultured human brain microvascular endothelial cells (HBMEC).
METHODSCultured HBMEC cells were pretreated with methylglyoxal before oxygen-glucose deprivation injury. Cell vitality was determined by MTT method, cell mortality was assessed by LDH release method, cell apoptosis was examined by Annexin V/PI formation method, and the advanced glycation end products (AGEs) were detected by Western-blot.
RESULTSMethylglyoxal induced HBMEC injury in a dose-dependent manner. At 2 mmol/L of methylglyoxal, the cell viability was 56.1% when methylglyoxal-pretreated cells exposed to oxygen-glucose deprivation, the cell inhibition rate was 90.0%. Aminoguanidine (1 mmol/L) inhibited methylglyoxal and OGD induced LDH release and Annexin V/PI formation. Furthermore, aminoguanidine (1 mmol/L) also decreased advanced glycation end products (AGEs) formation induced by methylglyoxal and oxygen-glucose deprivation.
CONCLUSIONAminoguanidine protected methylglyoxal mediated-oxygen-glucose deprivation injury in the cultured HBMEC, which may be associated with anti-glycation activity.
Apoptosis ; drug effects ; Cell Hypoxia ; drug effects ; Cell Survival ; drug effects ; Cells, Cultured ; Drug Antagonism ; Endothelial Cells ; drug effects ; metabolism ; pathology ; Endothelium, Vascular ; cytology ; Glycation End Products, Advanced ; metabolism ; Guanidines ; pharmacology ; Humans ; Pyruvaldehyde ; pharmacology

Result Analysis
Print
Save
E-mail