1.Chidamide triggers pyroptosis in T-cell lymphoblastic lymphoma/leukemia via the FOXO1/GSDME axis.
Xinlei LI ; Bangdong LIU ; Dezhi HUANG ; Naya MA ; Jing XIA ; Xianlan ZHAO ; Yishuo DUAN ; Fu LI ; Shijia LIN ; Shuhan TANG ; Qiong LI ; Jun RAO ; Xi ZHANG
Chinese Medical Journal 2025;138(10):1213-1224
BACKGROUND:
T-cell lymphoblastic lymphoma/acute lymphoblastic leukemia (T-LBL/ALL) is an aggressive form of hematological malignancy associated with poor prognosis in adult patients. Histone deacetylases (HDACs) are aberrantly expressed in T-LBL/ALL and are considered potential therapeutic targets. Here, we investigated the antitumor effect of a novel HDAC inhibitor, chidamide, on T-LBL/ALL.
METHODS:
HDAC1, HDAC2 and HDAC3 levels in T-LBL/ALL cell lines and patient samples were compared with those in normal controls. Flow cytometry, transmission electron microscopy, and lactate dehydrogenase release assays were conducted in Jurkat and MOLT-4 cells to assess apoptosis and pyroptosis. A specific forkhead box O1 (FOXO1) inhibitor was used to rescue pyroptosis and upregulated gasdermin E (GSDME) expression caused by chidamide treatment. The role of the FOXO1 transcription factor was evaluated by dual-luciferase reporter and chromatin immunoprecipitation assays. The efficacy of chidamide in vivo was evaluated in a xenograft mouse.
RESULTS:
The expression of HDAC1, HDAC2 and HDAC3 was significantly upregulated in T-LBL/ALL. Cell viability was obviously inhibited after chidamide treatment. Pyroptosis, characterized by cell swelling, pore formation on the plasma membrane and lactate dehydrogenase leakage, was identified as a new mechanism of chidamide treatment. Chidamide triggered pyroptosis through caspase 3 activation and GSDME transcriptional upregulation. Chromatin immunoprecipitation assays confirmed that chidamide led to the increased transcription of GSDME through a more relaxed chromatin structure at the promoter and the upregulation of FOXO1 expression. Moreover, we identified the therapeutic effect of chidamide in vivo .
CONCLUSIONS
This study suggested that chidamide exerts an antitumor effect on T-LBL/ALL and promotes a more inflammatory form of cell death via the FOXO1/GSDME axis, which provides a novel choice of targeted therapy for patients with T-LBL/ALL.
Humans
;
Pyroptosis/drug effects*
;
Forkhead Box Protein O1/genetics*
;
Aminopyridines/pharmacology*
;
Animals
;
Mice
;
Benzamides/pharmacology*
;
Cell Line, Tumor
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy*
;
Phosphate-Binding Proteins/metabolism*
;
Histone Deacetylase Inhibitors/pharmacology*
;
Jurkat Cells
;
Histone Deacetylases/metabolism*
;
Apoptosis/drug effects*
;
Gasdermins
2.Hydrogen sulfide ameliorates hypoxic pulmonary hypertension in rats by inhibiting aerobic glycolysis-pyroptosis.
Yuan CHENG ; Yun-Na TIAN ; Man HUANG ; Jun-Peng XU ; Wen-Jie CAO ; Xu-Guang JIA ; Li-Yi YOU ; Wan-Tie WANG
Acta Physiologica Sinica 2025;77(3):465-471
The present study aimed to explore whether hydrogen sulfide (H2S) improved hypoxic pulmonary hypertension (HPH) in rats by inhibiting aerobic glycolysis-pyroptosis. Male Sprague-Dawley (SD) rats were randomly divided into normal group, normal+NaHS group, hypoxia group, and hypoxia+NaHS group, with 6 rats in each group. The control group rats were placed in a normoxic (21% O2) environment and received daily intraperitoneal injections of an equal volume of normal saline. The normal+NaHS group rats were placed in a normoxic environment and intraperitoneally injected with 14 μmol/kg NaHS daily. The hypoxia group rats were placed in a hypoxia chamber, and the oxygen controller inside the chamber maintained the oxygen concentration at 9% to 10% by controlling the N2 flow rate. An equal volume of normal saline was injected intraperitoneally every day. The hypoxia+NaHS group rats were also placed in an hypoxia chamber and intraperitoneally injected with 14 μmol/kg NaHS daily. After the completion of the four-week modeling, the mean pulmonary artery pressure (mPAP) of each group was measured using right heart catheterization technique, and the right ventricular hypertrophy index (RVHI) was weighed and calculated. HE staining was used to observe pathological changes in lung tissue, Masson staining was used to observe fibrosis of lung tissue, and Western blot was used to detect protein expression levels of hexokinase 2 (HK2), pyruvate dehydrogenase (PDH), pyruvate kinase isozyme type M2 (PKM2), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), GSDMD-N-terminal domain (GSDMD-N), Caspase-1, interleukin-1β (IL-1β) and IL-18 in lung tissue. ELISA was used to detect contents of IL-1β and IL-18 in lung tissue. The results showed that, compared with the normal control group, there were no significant changes in all indexes in the normal+NaHS group, while the hypoxia group exhibited significantly increased mPAP and RVHI, thickened pulmonary vascular wall, narrowed lumen, increased collagen fibers, up-regulated expression levels of aerobic glycolysis-related proteins (HK2 and PKM2), up-regulated expression levels of pyroptosis-related proteins (NLRP3, GSDMD-N, Caspase-1, IL-1β, and IL-18), and increased contents of IL-1β and IL-18. These changes of the above indexes in the hypoxia group were significantly reversed by NaHS. These results suggest that H2S can improve rat HPH by inhibiting aerobic glycolysis-pyroptosis.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Hypertension, Pulmonary/metabolism*
;
Glycolysis/drug effects*
;
Hydrogen Sulfide/therapeutic use*
;
Hypoxia/complications*
;
Rats
;
Pyroptosis/drug effects*
3.Effect of Duhuo Jisheng Decoction on knee osteoarthritis model rabbits through regulation of cell pyroptosis mediated by PI3K/Akt/mTOR signaling pathway.
Lin-Qin HE ; Peng-Fei LI ; Xiao-Dong LI ; Qi-Peng CHEN ; Zong-Han TANG ; Yu-Xin SONG ; Han-Bing SONG
China Journal of Chinese Materia Medica 2025;50(1):187-197
This study aimed to investigate the underlying mechanisms of Duhuo Jisheng Decoction(DJD) in the prevention and treatment of knee osteoarthritis(KOA). Forty SPF New Zealand rabbits were randomly divided using SPSS 26.0 software into five groups: blank group, model group, low-dose DJD group, high-dose DJD group, and high-dose DJD+phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) signaling pathway activator group(high-dose DJD+740Y-P group), with eight rabbits in each group. Except for the blank group, the KOA model was established in the other groups using papain injection into the knee joint cavity combined with forced flexion of the knee joint. The day after modeling, the blank group and model group were given normal saline at 10 mL·kg~(-1) by gavage, the low-dose DJD group received DJD at 8.8 g·kg~(-1) by gavage, the high-dose DJD group received DJD at 35.2 g·kg~(-1) by gavage, and the high-dose DJD+740Y-P group received DJD at 35.2 g·kg~(-1) by gavage along with 740Y-P at 0.15 μmoL·kg~(-1) injected via the auricular vein. All groups received treatment continuously for four weeks. After modeling and intervention, behavioral observations were performed for all groups, and after the intervention, imaging assessments of the knee joints were conducted. Cartilage from the knee joints was collected, and gross morphological changes were observed. Pathological changes in cartilage tissue were examined using hematoxylin-eosin(HE) staining. The results of these observations were quantitatively evaluated using the Lequesne MG score, Kellgren-Lawrence(K-L) grading, Pelletier score, and Mankin score. ELISA was used to measure the levels of interleukin-1β(IL-1β), interleukin-18(IL-18), and matrix metalloproteinase 13(MMP13) in cartilage tissue. Real-time RT-PCR was used to detect the mRNA expression levels of PI3K, Akt, mTOR, Nod-like receptor protein 3(NLRP3), cysteine protease 1(caspase-1), and gasdermin D(GSDMD) in cartilage tissue. Western blot was employed to measure the protein expression levels of PI3K, Akt, mTOR, NLRP3, caspase-1, and GSDMD. The results showed that compared with the blank group, the model group exhibited significant knee joint degeneration, increased Lequesne MG score, K-L grading, Pelletier score, and Mankin score, elevated levels of IL-1β, IL-18, and MMP13 in cartilage tissue, activation of PI3K, Akt, and mTOR phosphorylation along with increased mRNA expression levels, and elevated protein and mRNA expression levels of NLRP3, caspase-1, and GSDMD. Compared with the model group, these indicators were reversed in both the low-dose and high-dose DJD groups, with the high-dose group showing greater decline degree than the low-dose DJD group. However, compared with the high-dose DJD group, the improvements in knee joint degeneration were less pronounced in the high-dose DJD+740Y-P group, with increased Lequesne MG score, K-L grading, Pelletier score, Mankin score, elevated levels of IL-1β, IL-18, and MMP13, activation of PI3K, Akt, and mTOR phosphorylation along with increased mRNA expression, and increased protein and mRNA expression levels of NLRP3, caspase-1, and GSDMD. In conclusion, DJD is effective and safe in the treatment of KOA, and its mechanism may be related to the inhibition of PI3K/Akt/mTOR signaling pathway-mediated pyroptosis in cartilage tissue, thereby improving knee joint bone structure, reducing the inflammatory response, and preventing cartilage matrix degradation.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rabbits
;
TOR Serine-Threonine Kinases/genetics*
;
Osteoarthritis, Knee/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Signal Transduction/drug effects*
;
Male
;
Disease Models, Animal
;
Pyroptosis/drug effects*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Humans
;
Female
4.Anti-endometritis effect of carbonized Scutellariae Radix in mice induced by LPS via inhibiting cell pyroptosis through IKBKE/NLRP3 signaling axis.
Hong TAO ; Rang-Rang TANG ; Qing SU ; Li HUANG ; Li-Li LI ; De-Ling WU ; Qi HUANG
China Journal of Chinese Materia Medica 2025;50(11):3024-3034
This paper investigated the inhibitory effect of carbonized Scutellariae Radix(Cb-SR) on pyroptosis in endometrial epithelial cells of mice with endometritis and its correlation with the IKBKE/NLRP3 signaling axis. Mice model of endometritis was established by using an intrauterine injection of 10 μL polysaccharides(LPS, 5 mg·mL~(-1)), and the mice were randomly divided into model group(LPS), low-dose group of Cb-SR(L-Cb-SR, 0.55 g·kg~(-1)), medium-dose group of Cb-SR(M-Cb-SR, 1.10 g·kg~(-1)), high-dose group of Cb-SR(H-Cb-SR, 2.20 g·kg~(-1)), crude Scutellariae Radix group(Cr-SR, 1.63 g·kg~(-1)), and Fuke Qianjin Capsule group(FQC, 0.30 g·kg~(-1)), with 10 mice in each group. Ten healthy female mice were selected and injected with PBS of equal volume into the bilateral uterus, and they were set as the sham group. The mice in the drug treatment groups were given the corresponding doses of Cb-SR, Cr-SR, FQC, or physiological saline of equal volume by gavage twice a day for seven days. Thirty minutes after the last administration, each mouse was euthanized by cervical dislocation. Hematoxylin-eosin(HE) staining and transmission electron microscopy were applied to observe the histopathological morphology of the uterine tissue. Immunohistochemistry was used to detect the expression of CD38 and CD138. Myeloperoxidase(MPO) values in neutrophils were measured by the kit; Enzyme-linked immunosorbent assay(ELISA) was used to measure the secretion of interleukin-18(IL-18), interleukin-1β(IL-1β), and tumor necrosis factor-α(TNF-α). Immunofluorescence and Western blot were used to analyze the expression of the proteins related to the IKBKE/NLRP3 signaling axis. Mouse endometrial epithelial cells(MEECs) were separated and purified from the uterine tissue of pregnant female mice through in vitro experiments and injured by LPS for 24 h, and then they were cultured with Cb-SR-containing serum. The anti-endometritis effect of Cb-SR was investigated by CCK-8 assay, scanning electron microscopy, and Western blot. The results showed that Cb-SR significantly reduced MPO values, attenuated uterine tissue damage, inhibited the expression of CD38 and CD138, decreased the levels of IL-1β, IL-18, and TNF-α, and inhibited the expression of proteins associated with IKBKE/NLRP3 signaling axis in mice with endometritis. In addition, Cb-SR-containing serum reduced swelling of MEECs organelles induced by LPS, decreased the expression of inflammatory factors, and suppressed the expression of IKBKE/NLRP3 signaling axis-related proteins. These results suggest that Cb-SR can inhibit endometrial epithelial cell pyroptosis in endometritis by suppressing the IKBKE/NLRP3 signaling axis.
Animals
;
Female
;
Mice
;
Pyroptosis/drug effects*
;
Signal Transduction/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Drugs, Chinese Herbal/chemistry*
;
Endometritis/chemically induced*
;
Lipopolysaccharides/adverse effects*
;
Scutellaria baicalensis/chemistry*
;
Humans
;
Epithelial Cells/drug effects*
5.Mechanism of isorhamnetin in alleviating acute lung injury by regulating pyroptosis medicated by NLRP3/ASC/caspase-1 axis.
Ya-Lei SUN ; Yu GUO ; Xin-Yu WANG ; Ya-Su ZHANG ; Xue CHENG ; Ke ZHU ; Li-Dian CHEN ; Xiao-Dong FENG
China Journal of Chinese Materia Medica 2025;50(15):4120-4128
This study aims to explore the intervention effects of isorhamnetin(Isor) on acute lung injury(ALI) and its regulatory effects on pyroptosis mediated by the NOD-like receptor family pyrin domain containing 3(NLRP3)/apoptosis-associated speck-like protein containing a CARD(ASC)/cysteine aspartate-specific protease-1(caspase-1) axis. In the in vivo experiments, 60 BALB/c mice were divided into five groups. Except for the control group, the other groups were administered Isor by gavage 1 hour before intratracheal instillation of LPS to induce ALI, and tissues were collected after 12 hours. In the in vitro experiments, RAW264.7 cells were divided into five groups. Except for the control group, the other groups were pretreated with Isor for 2 hours before LPS stimulation and subsequent assessments. Hematoxylin-eosin(HE) staining was used to observe pathological changes in lung tissue, while lung swelling, protein levels in bronchoalveolar lavage fluid(BALF), and myeloperoxidase(MPO) levels in lung tissue were measured. Cell proliferation toxicity and viability were assessed using the cell counting kit-8(CCK-8) method. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of interleukin-1β(IL-1β), IL-6, IL-18, and tumor necrosis factor-α(TNF-α). Protein levels of NLRP3, ASC, cleaved caspase-1, and the N-terminal fragment of gasdermin D(GSDMD-N) were evaluated using immunohistochemistry, immunofluorescence, and Western blot. The results showed that in the in vivo experiments, Isor significantly improved pathological damage in lung tissue, reduced lung swelling, protein levels in BALF, MPO levels in lung tissue, and levels of inflammatory cytokines such as IL-1β, IL-6, IL-18, and TNF-α, and inhibited the high expression of the NLRP3/ASC/caspase-1 axis and the pyroptosis core gene GSDMD-N. In the in vitro experiments, the safe dose of Isor was determined through cell proliferation toxicity assays. Isor reduced cell death and inhibited the expression levels of the NLRP3/ASC/caspase-1 axis, GSDMD-N, and inflammatory cytokines. In conclusion, Isor may alleviate ALI by modulating pyroptosis mediated by the NLRP3/ASC/caspase-1 axis.
Animals
;
Pyroptosis/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Acute Lung Injury/physiopathology*
;
Mice
;
Mice, Inbred BALB C
;
Quercetin/pharmacology*
;
Caspase 1/genetics*
;
CARD Signaling Adaptor Proteins/genetics*
;
Male
;
RAW 264.7 Cells
;
Humans
;
Lung/metabolism*
6.Coptidis Rhizoma-Scutellariae Radix alleviates CpG1826-induced cytokine storm secondary lung injury in mice by inhibiting mPTP/NLRP3 pyroptosis pathway.
Qing-Rui ZHONG ; Hong-Kai HUANG ; Yue-Jia LAN ; Huan WANG ; Yong ZENG ; Jia-Si WU
China Journal of Chinese Materia Medica 2025;50(15):4141-4152
This study aims to investigate the therapeutic effects of the Coptidis Rhizoma-Scutellariae Radix on cytokine storm secondary lung injury(CSSLI) induced by CpG1826 in mice, and to elucidate the potential molecular mechanisms by which its major active components, i.e., coptisine and wogonin, alleviate CSSLI by inhibiting the mitochondrial permeability transition pore(mPTP)/nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3) inflammasome pyroptosis pathway. In vivo, a mouse model of CSSLI was established by CpG1826 induction. Pulmonary edema was assessed by lung wet-to-dry weight ratio(W/D), lung injury was evaluated by hematoxylin-eosin(HE) staining, and ultrastructural changes in lung tissue were observed by transmission electron microscopy(TEM). The levels of interleukin(IL)-1β, high mobility group box 1 protein(HMGB1), IL-18, and IL-1α in bronchoalveolar lavage fluid were measured by enzyme-linked immunosorbent assay(ELISA). The results showed that the decoction of the Coptidis Rhizoma-Scutellariae Radix significantly reduced pulmonary edema, alleviated lung injury, and decreased the concentrations of related cytokines in BALF more effectively than either single herb alone, thereby improving CSSLI. In vitro, a CpG1826-induced CSSLI model was established in mouse alveolar macrophage MH-S cells. Calcein-AM quenching was used to screen for the most effective monomer components from the herb pair in inhibiting mPTP opening. Coptisine(5, 10, 20 μmol·L~(-1)) and wogonin(10, 20, 40 μmol·L~(-1)) markedly inhibited mPTP opening, with optimal effects and a clear dose-dependent pattern. These components suppressed mPTP opening, thereby reducing the release of mitochondrial DNA(mtDNA) and the accumulation of reactive oxygen species(ROS), effectively reversing the CpG1826-induced decrease in mitochondrial membrane potential(MMP). Further studies revealed that both coptisine and wogonin inhibited pyroptosis and downregulated the expression of key proteins in the NLRP3/Caspase-1/gasdermin D(GSDMD) pathway. In conclusion, the Coptidis Rhizoma-Scutellariae Radix improves CpG1826-induced CSSLI in mice, and this effect is associated with the inhibition of the mPTP/NLRP3 pyroptosis pathway, providing scientific evidence for its clinical application and further development.
Animals
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Pyroptosis/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/immunology*
;
Male
;
Lung Injury/immunology*
;
Cytokines/immunology*
;
Scutellaria baicalensis/chemistry*
;
Oligodeoxyribonucleotides/adverse effects*
;
Mice, Inbred C57BL
;
Coptis chinensis
7.Research progress and exploration of traditional Chinese medicine in treatment of sepsis-acute lung injury by inhibiting pyroptosis.
Wen-Yu WU ; Nuo-Ran LI ; Kai WANG ; Xin JIAO ; Wan-Ning LAN ; Yun-Sheng XU ; Lin WANG ; Jing-Nan LIN ; Rui CHEN ; Rui-Feng ZENG ; Jun LI
China Journal of Chinese Materia Medica 2025;50(16):4425-4436
Sepsis is a systemic inflammatory response caused by severe infection or trauma, and is one of the common causes of acute lung injury(ALI) and acute respiratory distress syndrome(ARDS). Sepsis-acute lung injury(SALI) is a critical clinical condition with high morbidity and mortality. Its pathogenesis is complex and not yet fully understood, and there is currently a lack of targeted and effective treatment options. Pyroptosis, a novel form of programmed cell death, plays a key role in the pathological process of SALI by activating inflammasomes and releasing inflammatory factors, making it a potential therapeutic target. In recent years, the role of traditional Chinese medicine(TCM) in regulating signaling pathways related to pyroptosis through multi-components and multi-targets has attracted increasing attention. TCM may intervene in pyroptosis by inhibiting the activation of NLRP3 inflammasomes and regulating the expression of Caspase family proteins, thus alleviating inflammatory damage in lung tissues. This paper systematically reviews the molecular regulatory network of pyroptosis in SALI and explores the potential mechanisms and research progress on TCM intervention in cellular pyroptosis. The aim is to provide new ideas and theoretical support for basic research and clinical treatment strategies of TCM in SALI.
Pyroptosis/drug effects*
;
Humans
;
Sepsis/genetics*
;
Acute Lung Injury/physiopathology*
;
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Inflammasomes/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
8.Effects of Yishen Yangsui formula() on pyroptosis in the spinal cord tissue in rats with degenerative cervical myelopathy.
Guo-Liang MA ; He YIN ; Bo XU ; Min-Shan FENG ; Dan ZHANG ; Dian ZHANG ; Xiao-Kuan QIN ; Li-Guo ZHU ; Bo-Wen YANG ; Xin CHEN
China Journal of Orthopaedics and Traumatology 2025;38(5):532-539
OBJECTIVE:
To preliminarily investigate the effects and mechanism of action of Yishen Yangsui Formula (, YSYSF)on the recovery of neurological function in rats with degenerative cervical myelopathy.
METHODS:
Fifty adult SD female rats were randomly divided into control group, sham group, model group, YSYSF group and positive drug group by using randomized numerical table method. In the model group, YSYSF group and positive drug group, polyvinyl alcohol acrylamide interpenetrating network hydrogel(water-absorbent swelling material) was used to construct a rat spinal cord chronic compression model. The sham group was implanted with the water-absorbent swelling material and then removed without causing spinal cord compression. The control group, the sham group and the model group were given equal amounts of saline by gavage, the group of YSYSF was given Chinese herbal medicine soup by gavage 9.1 g·kg-1 once a day, and the positive drug group was given tetrahexylsalicylglucoside sodium monosialate ganglioside by intraperitoneal injection 4.2 mg·kg-1 once a day. The motor function of the rats was assessed by the BBB method after 1, 3, 7, and 14 d of drug administration. The spinal cord tissues were taken from rats executed 14 d after drug administration, and the morphological changes of the spinal cord compression site were observed by HE staining, and the expression levels of Caspase-1, GSDMD, NLRP3, PYCARD, IL-1β, and IL-18 were detected in the area of spinal cord injury by Western blot method.
RESULTS:
The BBB scores of the control group and the sham group were normal at all time points after modeling, which were higher than the BBB scores of the model group, the YSYSF, and the positive drug group (P<0.05). From the 3rd day after gavage, at all time points, the BBB scores of rats in the YSYSF group and the positive drug group were higher than those of rats in the model group (P<0.05). The staining pattern of HE spinal cord tissue was normal in the control group and the sham group, and the HE spinal cord in the model group was severely damaged with a large number of neuron deaths, whereas the damage to the spinal cord and neuron cells was reduced in the YSYSF group and the positive drug group. The expression levels of caspase-1, GSDMD, NLRP3, PYCARD, IL-1β and IL-18 in the spinal cord of the model group were significantly higher than those of the sham group (P<0.0001), and the expression levels of caspase-1, GSDMD, NLRP3, PYCARD, IL-1β, and IL-18 in the YSYSF group and the drug group were significantly lower than those in the model group (P<0.05).
CONCLUSION
YSYSF can improve the motor function of rats with degenerative cervical spinal cord disease, alleviate the pathological changes, and promote the recovery of spinal cord neurological function. The specific mechanism may be related to the inhibition of the activation of inflammatory vesicles NLRP3 and PYCARD, the reduction of the release of inflammatory factors IL-1β and IL-18, the reduction of the expression of caspase-1 and GSDMD, the reduction of cellular death, and the inhibition of inflammatory response.
Animals
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Rats, Sprague-Dawley
;
Pyroptosis/drug effects*
;
Spinal Cord/pathology*
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Spinal Cord Diseases/drug therapy*
;
Interleukin-1beta/metabolism*
9.Mechanism of Qizhi Jiangtang capsule inhibits podocyte pyroptosis to improve kidney injury in diabetes nephropathy by regulating NLRP3/caspase-1/GSDMD pathway.
Shanshan SU ; Zhaoan GUO ; Huan YANG ; Hui LIU ; Jingnan TANG ; Xiaoyu JIANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):204-210
Objective To investigate the impact of Qizhi Jiangtang Capsule (QZJT) on renal damage in diabetic nephropathy (DN) mice via NOD like receptors family pyrin domain containing 3/caspase-1/ Gasdermin D (NLRP3/caspase-1/GSDMD) signaling pathway. Methods Mice were randomly allocated into six experimental groups: a normal control group (NC), a diabetic nephropathy model group (DN), a low-dose QZJT treatment group (L-QZJT), a high-dose QZJT treatment group (H-QZJT), a positive control group administered Shenqi Jiangtang Granules (SQJT), and an ML385 group (treated with an inhibitor of nuclear factor erythroid 2-related factor 2, Nrf2). Upon successful model induction, therapeutic interventions were commenced. Renal function impairment in the mice was evaluated through quantification of fasting blood glucose (FBG), 24-hour urinary albumin (UAlb), serum creatinine (SCr), blood urea nitrogen (BUN), and the kidney-to-body mass ratio (K/B). Renal tissue pathology was evaluated using HE and PAS staining. Serum levels of inflammatory cytokines IL-1β and IL-18 were quantified by ELISA. Levels of podocyte markers and proteins involved in relevant pathways were assessed using Western blot analysis. Results Compared with the NC group, FBG, 24 h UAlb, SCr, and BUN were increased in the DN group, and the K/B mass ratio was also increased. In contrast, compared with the DN group, FBG, 24 h UAlb, SCr, and BUN in both the low-dose (L-QZJT) and high-dose Quanzhou Jintang (H-QZJT) groups were decreased, and the K/B mass ratio was decreased as well. The therapeutic efficacy of H-QZJT was comparable to that of Shenqi Jiangtang Granules. QZJT ameliorated renal histopathological injury in DN mouse, increased the protein levels of Nephrin (a podocyte marker), and decreased the protein levels of NLRP3, apoptosis-associated speck-like protein containing CARD (ASC), pro-caspase-1, and GSDMD-N. After ML385 treatment, renal cells exhibited swelling and morphological changes, the inflammatory infiltrate area was enlarged, the protein levels of NLRP3, ASC, pro-caspase-1, and GSDMD-N were up-regulated, and the levels of IL-1β and IL-18 were increased. Conclusion QZJT may inhibit podocyte pyroptosis by acting on the Nrf2 to regulate the NLRP3/caspase-1/GSDMD pathway, thus improving renal damage in DN mouse.
Animals
;
Diabetic Nephropathies/pathology*
;
Podocytes/pathology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Pyroptosis/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Caspase 1/genetics*
;
Signal Transduction/drug effects*
;
Mice
;
Phosphate-Binding Proteins/genetics*
;
Male
;
Intracellular Signaling Peptides and Proteins/metabolism*
;
Mice, Inbred C57BL
;
Kidney/pathology*
;
Gasdermins
10.Study on the promotion of podocyte pyroptosis by high glucose-stimulated GMC-derived exosomes and the intervention effects of Tongluo Yishen Formula.
Wen YAN ; Binjie HAN ; Li LIN ; Liming CHEN ; Jie QU ; Xiaohui LI
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):495-504
Objective To investigate the effects of exosomes (Exo) derived from high glucose-stimulated glomerular mesangial cells (GMC) on the kidneys of C57BL/6 mice and the intervention mechanism of Tongluo Yishen Formula (TLYSF). Methods The rat GMC were divided into a normal glucose group (NG, with 5.6 mmol/L glucose) and a high glucose group (HG, with 30 mmol/L glucose). After 24 hours of culture, the supernatant was collected, and exosomes were extracted using the ultracentrifugation method. The exosomes were then identified by transmission electron microscopy and Western blot analysis. Male C57BL/6 mice were divided into three groups: NO-Exo group, NG-Exo group, and HG-Exo group. These groups were respectively administered tail vein injections of PBS buffer, exosomes derived from GMC cultured in normal glucose, and exosomes derived from GMC cultured in high glucose, three times a week for a total of 8 weeks. After 8 weeks, the mice in the HG-Exo group were randomly divided into three subgroups: the HG-Exo group [gavaged with saline], the HG-Exo+TLYSF group [gavaged with TLYSF at 34.32 g/(kg.d)], and the HG-Exo + VAL group [gavaged with valsartan suspension at 10.4 mg/(kg.d)], and the intervention lasted for 4 weeks. Urinary microalbumin (mALb), urinary N-acetyl-β-D-aminoglucosidase (NAG), glycated hemoglobin (HbA1c), serum creatinine (Scr) and urea nitrogen (BUN) were detected. Transmission electron microscopy was used to observe the ultrastructure of renal tissues. TUNEL was used to detect the DNA damage of renal tissue cells. Immunofluorescence was used to detect the expression of NOD-like receptor family pyrin domain containing 3 (NLRP3) and wilms tumor 1(WT-1). RT-PCR was used to detect the mRNA levels of NLRP3, cysteinyl aspartate-specific proteinase 1 (caspase-1), interleukin-1 beta (IL-1β), miR-200c-3p and miR-148a-3p. Western Blot was employed to detect the protein expression of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1 and IL-1β. Results Compared with the NG-Exo group, mice in the HG-Exo group exhibited significantly increased levels of mALb, urinary NAG, Scr and BUN. Transmission electron microscopy revealed ruptured podocyte membranes and swollen mitochondria. The positive rate of cells stained by the TUNEL increased, with elevated optical density of NLRP3 and decreased optical density of WT-1. Additionally, there was a significant increase in the level of NLRP3, caspase-1, IL-1β mRNA, as well as miR-200c-3p and miR-148a-3p. The protein expression of NLRP3, ASC, caspase-1, and IL-1β also increased. Compared with HG-Exo group, mice in the HG-Exo+TLYSF group showed decreased levels of mALb, urinary NAG, Scr, and BUN. The podocyte membranes were relatively intact, and mitochondrial damage was alleviated. The positive rate of cells stained by the TUNEL decreased, along with a reduction in the optical density of NLRP3 and an increase in the optical density of WT-1. Furthermore, the mRNA expression levels of NLRP3, caspase-1, IL-1β, miR-200c-3p, and miR-148a-3p were all downregulated to varying degrees. The protein expression levels of NLRP3, ASC, caspase-1, and IL-1β also decreased. Conclusion Exosomes derived from GMC stimulated by high glucose can damage the kidneys of mice and induce podocyte pyroptosis. TLYSF may ameliorate podocyte pyroptosis by downregulating the expression of exosomal miR-200c-3p and miR-148a-3p and inhibiting the activation of the NLRP3/ASC/caspase-1 pathway.
Animals
;
Exosomes/ultrastructure*
;
Glucose/pharmacology*
;
Male
;
Podocytes/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice, Inbred C57BL
;
Mice
;
Mesangial Cells/metabolism*
;
Pyroptosis/drug effects*
;
Rats
;
MicroRNAs/genetics*

Result Analysis
Print
Save
E-mail