1.Pyridine degradation characteristics of Rhodococcus sp. LV4 under high salinity conditions.
Ying WANG ; Hu CHEN ; Mengdi XU ; Yongkang LÜ
Chinese Journal of Biotechnology 2023;39(3):1202-1216
Biodegradation of pyridine pollutant by microorganisms is one of the economical and effective methods to solve the environmental pollution of pyridine under high salinity conditions. To this end, screening of microorganisms with pyridine degradation capability and high salinity tolerance is an important prerequisite. In this paper, a salt-resistant pyridine degradation bacterium was isolated from the activated sludge of Shanxi coking wastewater treatment plant, and identified as a bacterium belonging to Rhodococcus on the basis of colony morphology and 16S rDNA gene phylogenetic analysis. Salt tolerance experiment showed that strain LV4 could grow and degrade pyridine with the initial concentration of 500 mg/L completely in 0%-6% saline environment. However, when the salinity was higher than 4%, strain LV4 grew slowly and the degradation time of pyridine by strain LV4 was significantly prolonged. Scanning electron microscopy showed that the cell division of strain LV4 became slower, and more granular extracellular polymeric substance (EPS) was induced to secrete in high salinity environment. When the salinity was not higher than 4%, strain LV4 responded to the high salinity environment mainly through increasing the protein content in EPS. The optimum conditions for pyridine degradation by strain LV4 at 4% salinity were 30 ℃, pH 7.0 and 120 r/min (DO 10.30 mg/L). Under these optimal conditions, strain LV4 could completely degrade pyridine with an initial concentration of 500 mg/L at a maximum rate of (29.10±0.18) mg/(L·h) after 12 h adaptation period, and the total organic carbon (TOC) removal efficiency reached 88.36%, indicating that stain LV4 has a good mineralization effect on pyridine. By analyzing the intermediate products in pyridine degradation process, it was speculated that strain LV4 achieved pyridine ring opening and degradation mainly through two metabolic pathways: pyridine-ring hydroxylation and pyridine-ring hydrogenation. The rapid degradation of pyridine by strain LV4 in high salinity environment indicates its application potential in the pollution control of high salinity pyridine environment.
Rhodococcus/genetics*
;
Phylogeny
;
Extracellular Polymeric Substance Matrix/metabolism*
;
Sewage
;
Biodegradation, Environmental
;
Pyridines/metabolism*
2.Chloroquine Enhances BIIB021-induced Apoptosis in Chronic Myeloid Leukemia Cells Bearing T315I Mutation.
Wei HE ; Cai-Fang ZHAO ; Li CHEN ; Hui-Xian HU
Journal of Experimental Hematology 2022;30(4):1005-1010
OBJECTIVE:
To explore the combined pro-apoptosis effect of HSP90 inhibitor BIIB021 and chloroquine (CQ) in chronic myeloid leukemia (CML) cells bearing T315I mutation and its mechanism.
METHODS:
The p210-T315I cells were divided into 4 groups by different treatment: control, BIIB021, CQ, and BIIB021 + CQ. After treated with BIIB021 or/and CQ for 24 hours, Annexin V/PI binding assay was used to detect apoptosis rates of CML cells. DAPI staining was used to observe nuclear fragmentation, and Western blot was used to detect the expression of caspase 3, PARP (apoptosis related proteins) and p62, LC3-I/II (autophagy related proteins). P210-T315I cells were inoculated subcutaneously into mice and CML mouse models were established. The mice in treatment groups were injected with BIIB021 and/or CQ while mice in control group were treated with PBS and normal saline. The tumor volume of mice was measured every 4 days, and protein level of cleaved-caspase 3 and LC3-II in tumor tissue were detected by immunohistochemistry.
RESULTS:
The results showed that BIIB021 induced apoptosis of CML cells in a dose-dependent manner ( r=0.91). CQ could enhance the apoptosis-inducing effect of BIIB021. Flow cytometry analysis results showed that the apoptosis rate of p210-T315I cells in combination group was higher than that in BIIB021 or CQ only group (P<0.05). DAPI staining showed nuclear fragmentation in combination group could be observed more obviously. Western blot analysis showed that BIIB021 could induce LC3-I to convert to LC3-II and decrease p62 protein levels (P<0.05). Moreover, the combination group had higher expression of LC3-II, p62 (P<0.05), activated PARP and activated caspase 3 than BIIB021 only group (P<0.05). Besides, experiment in vivo showed the mean tumor volume in co-treatment group was lower than that in single drug group (P<0.01). Immunohistochemistry of tumor tissue also showed the protein level of cleaved-caspase 3 and LC3-II in combined group was higher than that in BIIB021 only group.
CONCLUSION
HSP90 inhibitor BIIB021 induced significant apoptosis of CML cells bearing T315I both in vivo and in vitro. CQ can enhance this effect probably by autophagy inhibition.
Adenine/analogs & derivatives*
;
Animals
;
Apoptosis
;
Autophagy
;
Caspase 3/metabolism*
;
Cell Line, Tumor
;
Chloroquine/therapeutic use*
;
Fusion Proteins, bcr-abl/pharmacology*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*
;
Mice
;
Mutation
;
Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use*
;
Pyridines
3.Rapamycin enhances the anti-tumor activity of cabozantinib in cMet inhibitor-resistant hepatocellular carcinoma.
Chao GAO ; Shenghao WANG ; Weiqing SHAO ; Yu ZHANG ; Lu LU ; Huliang JIA ; Kejin ZHU ; Jinhong CHEN ; Qiongzhu DONG ; Ming LU ; Wenwei ZHU ; Lunxiu QIN
Frontiers of Medicine 2022;16(3):467-482
Cabozantinib, mainly targeting cMet and vascular endothelial growth factor receptor 2, is the second-line treatment for patients with advanced hepatocellular carcinoma (HCC). However, the lower response rate and resistance limit its enduring clinical benefit. In this study, we found that cMet-low HCC cells showed primary resistance to cMet inhibitors, and the combination of cabozantinib and mammalian target of rapamycin (mTOR) inhibitor, rapamycin, exhibited a synergistic inhibitory effect on the in vitro cell proliferation and in vivo tumor growth of these cells. Mechanically, the combination of rapamycin with cabozantinib resulted in the remarkable inhibition of AKT, extracellular signal-regulated protein kinases, mTOR, and common downstream signal molecules of receptor tyrosine kinases; decreased cyclin D1 expression; and induced cell cycle arrest. Meanwhile, rapamycin enhanced the inhibitory effects of cabozantinib on the migration and tubule formation of human umbilical vascular endothelial cells and human growth factor-induced invasion of cMet inhibitor-resistant HCC cells under hypoxia condition. These effects were further validated in xenograft models. In conclusion, our findings uncover a potential combination therapy of cabozantinib and rapamycin to combat cabozantinib-resistant HCC.
Anilides/pharmacology*
;
Animals
;
Carcinoma, Hepatocellular/drug therapy*
;
Cell Line, Tumor
;
Cell Proliferation
;
Endothelial Cells/metabolism*
;
Humans
;
Liver Neoplasms/drug therapy*
;
Pyridines/pharmacology*
;
Sirolimus/pharmacology*
;
Xenograft Model Antitumor Assays
4.Prostaglandin E receptors differentially regulate the output of proinflammatory cytokines in myometrial cells from term pregnant women.
You-Yi ZHANG ; Wei-Na LIU ; Xing-Ji YOU ; Hang GU ; Chen XU ; Xin NI
Acta Physiologica Sinica 2019;71(2):248-260
Prostaglandin (PG) E plays critical roles during pregnancy and parturition. Emerging evidence indicates that human labour is an inflammatory event. We sought to investigate the effect of PGE on the output of proinflammatory cytokines in cultured human uterine smooth muscle cells (HUSMCs) from term pregnant women and elucidate the role of subtypes of PGE receptors (EP, EP, EP and EP). After drug treatment and/or transfection of each receptor siRNA, the concentrations of inflammatory secreting factors in HUSMCs culture medium were detected by the corresponding ELISA kits. The results showed that, PGE increased interleukin 6 (IL-6) and tumor necrosis factor alpha (TNFα) output, decreased chemokine (c-x-c motif) ligand 8 (CXCL8) output in a dose-dependent manner, but had no effect on IL-1β and chemokine (c-c motif) ligand 2 (CCL-2) secretion of HUSMCs. EP/EP agonist 17-phenyl-trinor-PGE stimulated IL-6 and TNFα whilst suppressing IL-1β and CXCL8 output. The effects of 17-phenyl-trinor-PGE on IL-1β and CXCL8 secretion were remained whereas its effect on IL-6 and TNFα output did not occur in the cells with EP knockdown. The stimulatory effects of 17-phenyl-trinor-PGE on IL-6 and TNFα were remained whereas the inhibitory effects of 17-phenyl-trinor-PGE on IL-1β secretion was blocked in the cells with EP knockdown. Either of EP and EP agonists stimulated IL-1β and TNFα output, which was reversed by EP and EP siRNA, respectively. The inhibitors of phospholipase C (PLC) and protein kinase C (PKC) blocked EP/EP modulation of TNFα and CXCL8 output. PI3K inhibitor LY294002 and P38 inhibitor SB202190 blocked 17-phenyl-trinor-PGE-induced IL-1β and IL-6 output, respectively. The inhibitors of adenylyl cyclase and PKA prevented EP and EP stimulation of IL-1β and TNFα output, whereas PLC and PKC inhibitors blocked EP- and EP-induced TNFα output but not IL-1β output. Our data suggest that PGE receptors exhibit different effects on the output of various cytokines in myometrium, which can subtly modulate the inflammatory microenvironment in myometrium during pregnancy.
Cells, Cultured
;
Chromones
;
pharmacology
;
Cytokines
;
metabolism
;
Female
;
Humans
;
Imidazoles
;
pharmacology
;
Inflammation
;
Morpholines
;
pharmacology
;
Myocytes, Smooth Muscle
;
cytology
;
Myometrium
;
cytology
;
Phosphatidylinositol 3-Kinases
;
Pregnancy
;
Pyridines
;
pharmacology
;
Receptors, Prostaglandin E
;
physiology
5.P38 MAPK inhibitor SB203580 attenuates the toxicity of ropivacaine on PC12 cells.
Yuan CHEN ; E WANG ; Zhihua SUN ; Zongbin SONG ; Zhi YE ; Zhong ZHANG
Journal of Central South University(Medical Sciences) 2019;44(9):985-989
To investigate the effect of SB203580, a p38MAPK specific inhibitor, on ropivacaine-induced cytotoxicity in PC12 cells.
Methods: PC12 cells were divided into three groups: the normal group (Group N), cells were cultured for 48 h; the ropivacaine group (Group R), cells were cultured with 15 mmol/L ropivacaine hydrochloride for 48 h; the ropivacaine+SB203580 group (Group R+S), cells were cultured with 15 mmol/L ropivacaine hydrochloride plus 10 μmol/L SB203580 for 48 h. The cell survival rates were detected by MTT assay. The protein levels of cleaved caspase-3, phosphor-p38 (p-p38) and cystolic cytochrome C (Cyt C) were detected by Western blotting.
Results: Compared with the Group N, the number and survival rate of PC12 cells in the Group R and the Group R+S were significantly reduced (all P<0.05); the number and survival rate of PC12 cells in the Group R+S were significantly higher than those in the Group R (both P<0.05). Compared with the Group N, the levels of p-p38 and cleaved caspase-3, and the content of cytoplasmic Cyt C in the PC12 cells from the Group R and the Group R+S were significantly enhanced (all P<0.05); compared with the Group R, the levels of p-p38 and cleaved caspase-3, and the content of cytoplasmic Cyt C in the PC12 cells from the Group R+S were decreased (all P<0.05).
Conclusion: The ropivacaine-induced cytotoxicity can be attenuated via inhibition of p38MAPK; which is related to decrease in Cyt C content and cleaved caspase-3 expression.
Anesthetics, Local
;
toxicity
;
Animals
;
Apoptosis
;
Imidazoles
;
PC12 Cells
;
Pyridines
;
Rats
;
Ropivacaine
;
toxicity
;
p38 Mitogen-Activated Protein Kinases
;
metabolism
6.Histamine Excites Rat GABAergic Ventral Pallidum Neurons via Co-activation of H1 and H2 Receptors.
Miao-Jin JI ; Xiao-Yang ZHANG ; Xiao-Chun PENG ; Yang-Xun ZHANG ; Zi CHEN ; Lei YU ; Jian-Jun WANG ; Jing-Ning ZHU
Neuroscience Bulletin 2018;34(6):1029-1036
The ventral pallidum (VP) is a crucial component of the limbic loop of the basal ganglia and participates in the regulation of reward, motivation, and emotion. Although the VP receives afferent inputs from the central histaminergic system, little is known about the effect of histamine on the VP and the underlying receptor mechanism. Here, we showed that histamine, a hypothalamic-derived neuromodulator, directly depolarized and excited the GABAergic VP neurons which comprise a major cell type in the VP and are responsible for encoding cues of incentive salience and reward hedonics. Both postsynaptic histamine H1 and H2 receptors were found to be expressed in the GABAergic VP neurons and co-mediate the excitatory effect of histamine. These results suggested that the central histaminergic system may actively participate in VP-mediated motivational and emotional behaviors via direct modulation of the GABAergic VP neurons. Our findings also have implications for the role of histamine and the central histaminergic system in psychiatric disorders.
Action Potentials
;
drug effects
;
Animals
;
Basal Forebrain
;
cytology
;
Dimaprit
;
pharmacology
;
Dose-Response Relationship, Drug
;
Electric Stimulation
;
Female
;
GABAergic Neurons
;
drug effects
;
Histamine
;
pharmacology
;
Histamine Agonists
;
pharmacology
;
Lysine
;
analogs & derivatives
;
metabolism
;
Male
;
Patch-Clamp Techniques
;
Pyridines
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Histamine H1
;
metabolism
;
Receptors, Histamine H2
;
metabolism
;
Sodium Channel Blockers
;
pharmacology
;
Tetrodotoxin
;
pharmacology
;
gamma-Aminobutyric Acid
;
metabolism
7.Role of PD 0332991 on the Proliferation and Apoptosis of Vascular Endothelial Cells.
Chenlong ZHAO ; Minghui LIU ; Yongwen LI ; Hongbing ZHANG ; Ying LI ; Hao GONG ; Yin YUAN ; Weiting LI ; Hongyu LIU ; Jun CHEN
Chinese Journal of Lung Cancer 2018;21(5):375-382
BACKGROUND:
Angiogenesis is an important process in the development of tumor. PD 0332991, a cell cycle inhibitor, can specifically inhibit CD4/6 phosphorylation and cell cycle progression. In xeongraft mice models, PD 0332991 treated mice had significantly decreased angiogenesis and vascular density compared with the control group, but the mechanism remains unknown. The purpose of this study is to investigate the role and molecular mechanism of PD 0332991 on vascular endothelial cells.
METHODS:
EA.hy926 cells, a kind of vascular endothelial cell, were used as the research model. The effects of PD 0332991 on the activity and proliferation of EA.hy926 cells were detected by the MTT, EdU assays. Wound-healing assays and transwell assays were used to determine the effects of PD 0332991 on the mobility of EA.hy926. The influence of PD 0332991 on cell cycle and apoptosis of endothelial cells was tested by flow cytometry, and the Western blot was applied to observe the expression of cell cycle related proteins in EA.hy926 cells treated by PD 0332991.
RESULTS:
PD 0332991 significantly inhibited the proliferation and mobility of EA.hy926 cells, caused cell cycle arrest and apoptosis. At the same time, PD 0332991 inhibited the expression of CDK4/6 and phosphorylation of Rb, and thus inhibited the cell cycle progression of EA.hy926 cells.
CONCLUSIONS
PD 0332991 can inhibit the proliferation and activity of endothelial cells and induces apoptosis.
Angiogenesis Inhibitors
;
pharmacology
;
Animals
;
Apoptosis
;
drug effects
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Cell Survival
;
drug effects
;
Cyclin-Dependent Kinase 4
;
genetics
;
metabolism
;
Cyclin-Dependent Kinase 6
;
genetics
;
metabolism
;
Endothelial Cells
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Lung Neoplasms
;
drug therapy
;
genetics
;
metabolism
;
physiopathology
;
Mice
;
Piperazines
;
pharmacology
;
Pyridines
;
pharmacology
8.Role of p38MAPK signaling pathway in rats with phantom limb pain.
Hui JIANG ; Yongquan CHEN ; Jintao LIU
Journal of Central South University(Medical Sciences) 2018;43(6):589-593
To investigate the role of p38MAPK signal pathway in spinal cord and dorsal root ganglion (DRG) in rats with phantom limb pain and the effects of specific inhibitors.
Methods: Healthy adult male SD rats (n=48) were cut off one side of the sciatic under anesthesia to establish a model of phantom limb pain. In addition, the healthy rats were taken as a sham group (group S, n=24). The animals were scored by observing the action of chewing (0=no chewing, 13=the worst chewing) after the operation and were sacrificed on the following day after the operation. The successful model of phantom limb pain were randomly divided into 2 groups: a phantom limb pain group (group P, n=24) and a phantom limb pain plus inhibitor group (group P+I, n=24). SB203580 was given to the rat at 0.8 mg/kg on every Monday until the rats were sacrificed, the rest of the rats received an equal amount of saline. Eight rats from each group were randomly taken for the determination of levels of P-p38MAPK in spinal cord and DRG before administration and on the 4th, 6th, 8th weekend following the administration, respectively.
Results: In the sham group, no animal developed chewing. Meanwhile, rats in successful model of phantom limb pain group began chewing from the 2nd day after operation with scores at eight to eleven. The chewing scores in the P+I group were reduced after the treatment. Compared with group S, P-p38MAPK levels were elevated in groups of P and P+I (P<0.05 or P<0.01). Compared with group P, P-p38MAPK level was decreased in the group P+I (P<0.05 or P<0.01).
Conclusion: P38MAPK signal pathway involves in the development of phantom limb pain.
Animals
;
Disease Models, Animal
;
Enzyme Inhibitors
;
pharmacology
;
Ganglia, Spinal
;
enzymology
;
Imidazoles
;
pharmacology
;
Male
;
Mastication
;
physiology
;
Phantom Limb
;
enzymology
;
etiology
;
physiopathology
;
Pyridines
;
pharmacology
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Sciatic Nerve
;
injuries
;
Self Mutilation
;
enzymology
;
physiopathology
;
Signal Transduction
;
Spinal Cord
;
enzymology
;
p38 Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
metabolism
9.ASIC1a contributes to the symptom of pain in a rat model of chronic prostatitis.
Song FAN ; Zong-Yao HAO ; Li ZHANG ; Jun ZHOU ; Yi-Fei ZHANG ; Shen TAI ; Xian-Sheng ZHANG ; Chao-Zhao LIANG
Asian Journal of Andrology 2018;20(3):300-305
This study aims to validate our hypothesis that acid-sensing ion channels (ASICs) may contribute to the symptom of pain in patients with chronic prostatitis (CP). We first established a CP rat model, then isolated the L5-S2 spinal dorsal horn neurons for further studies. ASIC1a was knocked down and its effects on the expression of neurogenic inflammation-related factors in the dorsal horn neurons of rat spinal cord were evaluated. The effect of ASIC1a on the Ca2+ ion concentration in the dorsal horn neurons of rat spinal cord was measured by the intracellular calcium ([Ca2+]i) intensity. The effect of ASIC1a on the p38/mitogen-activated protein kinase (MAPK) signaling pathway was also determined. ASIC1a was significantly upregulated in the CP rat model as compared with control rats. Acid-induced ASIC1a expression increased [Ca2+]i intensity in the dorsal horn neurons of rat spinal cord. ASIC1a also increased the levels of neurogenic inflammation-related factors and p-p38 expression in the acid-treated dorsal horn neurons. Notably, ASIC1a knockdown significantly decreased the expression of pro-inflammatory cytokines. Furthermore, the levels of p-p38 and pro-inflammatory cytokines in acid-treated dorsal horn neurons were significantly decreased in the presence of PcTx-1, BAPTA-AM, or SB203580. Our results showed that ASIC1a may contribute to the symptom of pain in patients with CP, at least partially, by regulating the p38/MAPK signaling pathway.
Acid Sensing Ion Channel Blockers/pharmacology*
;
Acid Sensing Ion Channels/genetics*
;
Animals
;
Calcium/metabolism*
;
Chelating Agents/pharmacology*
;
Chronic Disease
;
Cytokines/metabolism*
;
Disease Models, Animal
;
Egtazic Acid/pharmacology*
;
Gene Knockdown Techniques
;
Imidazoles/pharmacology*
;
Inflammation/metabolism*
;
MAP Kinase Signaling System/genetics*
;
Male
;
Pain/genetics*
;
Peptides/pharmacology*
;
Phosphorylation/drug effects*
;
Posterior Horn Cells/metabolism*
;
Prostatitis/complications*
;
Protein Kinase Inhibitors/pharmacology*
;
Pyridines/pharmacology*
;
Rats
;
Spider Venoms/pharmacology*
;
Up-Regulation
;
p38 Mitogen-Activated Protein Kinases/metabolism*
10.Tolfenamic Acid Inhibits the Proliferation, Migration, and Invasion of Nasopharyngeal Carcinoma: Involvement of p38-Mediated Down-Regulation of Slug.
Tatsanachat JITTREETAT ; Yoo Seob SHIN ; Hye Sook HWANG ; Bok Soon LEE ; Yeon Soo KIM ; Phakdee SANNIKORN ; Chul Ho KIM
Yonsei Medical Journal 2016;57(3):588-598
PURPOSE: Tolfenamic acid (TA), a non-steroidal anti-inflammatory drug, is known to exhibit antitumor effects in various cancers apart from nasopharyngeal cancer (NPC). NPC exhibits high invasiveness, as well as metastatic potential, and patients continue to suffer from residual, recurrent, or metastatic disease even after chemoradiation therapy. Therefore, new treatment strategies are needed for NPC. In this study, we investigated the efficacy and molecular mechanisms of TA in NPC treatment. MATERIALS AND METHODS: TA-induced cell death was detected by cell viability assay in the NPC cell lines, HNE1 and HONE1. Wound healing assay, invasion assay, and Western blot analysis were used to evaluate the antitumor effects of TA in NPC cell lines. RESULTS: Treatment with TA suppressed the migration and invasion of HNE1 and HONE1 cells. Hepatocyte growth factor enhanced the proliferation, migration, and invasion abilities of NPC cells. This enhancement was successfully inhibited by TA treatment. Treatment with TA increased phosphorylation of p38, and the inhibition of p38 with SB203580 reversed the cytotoxic, anti-invasive, and anti-migratory effects of TA treatment in NPC cell lines. Moreover, inhibition of p38 also reversed the decrease in expression of Slug that was induced by TA treatment. CONCLUSION: In conclusion, the activation of p38 plays a role in mediating TA-induced cytotoxicity and inhibition of invasion and migration via down-regulation of Slug.
Animals
;
Anti-Inflammatory Agents, Non-Steroidal/*pharmacology/therapeutic use
;
Cell Line, Tumor
;
Cell Movement/*drug effects
;
Cell Proliferation/*drug effects
;
Cell Survival/*drug effects
;
Down-Regulation
;
Gastropoda
;
Gene Expression Regulation, Neoplastic/drug effects
;
Hepatocyte Growth Factor/metabolism/*pharmacology
;
Humans
;
Imidazoles
;
MAP Kinase Signaling System/drug effects
;
Nasopharyngeal Neoplasms/*drug therapy/metabolism/pathology
;
Neoplasm Invasiveness/*prevention & control
;
Phosphorylation/drug effects
;
Pyridines
;
ortho-Aminobenzoates/*pharmacology/therapeutic use

Result Analysis
Print
Save
E-mail