1.Role of the Nrf2/HO-1 pathway in cypermethrin-induced oxidative injury of mice hippocampal neurons.
Lihua ZHOU ; Xun ZHANG ; Yingying YU ; Panpan ZHANG
Journal of Southern Medical University 2025;45(5):893-900
OBJECTIVES:
To explore whether the antioxidant axis Nrf2/HO-1 is involved in the regulation of hippocampus injury induced by cypermethrin and its underlying mechanism.
METHODS:
Ten-week-old C57BL/6 mice were randomly divided into control group and cypermethrin exposure groups with low, medium, and high exposure levels. After 21 days of oral gavage of corn oil (control) or cypermethrin, the levels of MDA, T-SOD, GSH-Px and CAT in the hippocampus of the mice were examined to evaluate the oxidative stress levels. HE staining was used to observe morphological changes of the hippocampal neurons. Western blotting, immunofluorescence staining and RT-qPCR were employed to detect the protein expressions and mRNA expression of Nrf2 and HO-1 and HO-1.
RESULTS:
Subacute oral exposure to cypermethrin significantly increased MDA level, decreased the activities of antioxidant enzymes T-SOD, GSH-Px and CAT, and induced neuronal damage in the CA1 and CA3 regions in the hippocampus of C57BL/6 mice. Cypermethrin exposure also caused Nrf2 protein translocation from the cytoplasm to the nucleus, accompanied by upregulated expression levels of the key antioxidant factor Nrf2 and its downstream target kinase HO-1.
CONCLUSIONS
Cypermethrin exposure dose-dependently causes oxidative damage in the hippocampus of C57BL/6 mice, which is regulated by the Nrf2/HO-1 antioxidant pathway.
Animals
;
Pyrethrins/toxicity*
;
NF-E2-Related Factor 2/metabolism*
;
Hippocampus/cytology*
;
Mice, Inbred C57BL
;
Mice
;
Oxidative Stress/drug effects*
;
Neurons/pathology*
;
Heme Oxygenase-1/metabolism*
;
Signal Transduction
;
Membrane Proteins
2.Molecular mechanisms of lung cancer induced by the insecticide lambda-cyhalothrin.
Yongshun DUAN ; Zifei WANG ; Mengxuan WU ; Shuo WANG ; Xin GUO ; Zhihua NI
Chinese Journal of Biotechnology 2025;41(10):3801-3816
The inappropriate utilisation of the agricultural insecticide lambda-cyhalothrin (LCT) has the potential to result in residues that compromise food safety and human health. Respiratory exposure represents a major route of LCT contact in humans. Nevertheless, its deleterious effects on the respiratory system remain inadequately characterized. It is imperative to elucidate the potential relationship and mechanisms by which lung cancer, a significant malignant neoplasm of the respiratory system, is associated with exposure to LCT. The objective of this study is to utilise bioinformatics methodologies to screen and analyse the key target molecules affected by LCT in the occurrence of lung cancer, and their mechanisms of action. Specifically, network toxicology methods were employed to identify core targets of LCT-induced lung cancer. Subsequently, functional annotation to delineate associated cellular pathways, and finally, molecular docking to simulate binding modes between LCT and shared core targets. Core target screening identified 50 targets for large cell lung cancer, 54 for small cell lung cancer, 29 for lung squamous cell carcinoma, and 28 for lung adenocarcinoma, with EGFR, HSP90AA1, JUN, CCL2, MYC, CXCL8, and HSPA4 shared in all subtypes. Functional annotation revealed that LCT-triggered oncogenic pathways predominantly involved ubiquitination, chemotaxis, and tumor immune signaling. Molecular docking demonstrated spontaneous binding of LCT to core targets mediated by hydrogen bonds and π-cation interactions. These results establish a theoretical framework for evaluating LCT-associated risks of lung cancer and respiratory system damage.
Lung Neoplasms/metabolism*
;
Pyrethrins/toxicity*
;
Humans
;
Insecticides/toxicity*
;
Nitriles/toxicity*
;
Molecular Docking Simulation
3.Chlorfenapyr-Induced Toxic Leukoencephalopathy with Radiologic Reversibility: A Case Report and Literature Review.
Byung Hyun BAEK ; Seul Kee KIM ; Woong YOON ; Tae Wook HEO ; Yun Young LEE ; Heoung Keun KANG
Korean Journal of Radiology 2016;17(2):277-280
Chlorfenapyr is a widely used, moderately hazardous pesticide. Previous reports have indicated that chlorfenapyr intoxication can be fatal in humans. We reported the first non-fatal case of chlorfenapyr-induced toxic leukoencephalopathy in a 44-year-old female with resolution of extensive and abnormal signal intensities in white matter tracts throughout the brain, brain stem, and spinal cord on serial magnetic resonance imaging.
Adult
;
Brain/*radiography
;
Brain Stem/radiography
;
Female
;
Humans
;
Insecticides/*toxicity
;
Leukoencephalopathies/*etiology/radiography
;
*Magnetic Resonance Imaging
;
Pyrethrins/*toxicity
;
Spinal Cord/*radiography
;
White Matter/radiography
4.Research of fenvalerate induce hippocampal neurons injury through interfering with estrogen action.
Linlin LU ; Zhen LYU ; Long ZHANG ; Xin XIA ; Qunan WANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2014;32(7):493-499
OBJECTIVETo investigate whether fenvalerate can induce mouse hippocampal nerve cell damage by interfering with estrogen (E2) effect.
METHODSHippocampus were dissected and cultured from Embryo 18 d ICR mice, the cells were cultured for 7 days. Fenvalerate (FEN, 0, 1, 10, 50 µg/ml), FEN (10, 50 µg/ml) and estrogen receptor antagonist ICI 182, 780 (1 µmol/L), FEN (0, 10, 50 µg/ml) and E2 (10 nmol/L) were applied to the cultured cells for 48h. Immunocytochemically stained with neurons and astrocytes to evaluate the levels respectively, and the growth of neurite. Result 1µg/ml FEN have no effect on neurons, neurites and protoplasmic astrocytes, 10 and 50 µg/ml FEN can significantly decrease the neuron viability and the length of neurite as well as increase the level of protoplasmic astrocytes (P < 0.05 vs. control group). ICI 182, 780 alone have no effect on neurons, neurites and protoplasmic astrocytes; ICI+10 µg/ml FEN significantly increase the cell viability and extend neurite length as well as decrease protoplasmic astrocytes (P < 0.05 vs. 10 µg/ml FEN alone group); ICI+50 µg/ml FEN significantly increase the cell viability and decrease protoplasmic astrocytes (P < 0.05 vs. 50 µg/ml FEN alone group). E2 alone have no effect on protoplasmic astrocytes, while can promote neuronal survival and neurite growth; E2+10 µg/ml FEN and E2+50 µg/ml FEN significantly decrease neuronal survival and neurite growth, as well as increase protoplasmic astrocytes (P < 0.05 vs. E2 alone group).
CONCLUSIONFenvalerate can induce the loss of hippocampal neurons through disrupting estrogen nuclear receptor signaling, and inhibit the length of neurite through disrupting estrogen nuclear receptor and membrane receptor signaling. The effect of estrogen disruption play an important role in developmental neurotoxicity by fenvalerate.
Animals ; Astrocytes ; drug effects ; Cells, Cultured ; Estrogens ; pharmacology ; Hippocampus ; drug effects ; pathology ; Mice ; Mice, Inbred ICR ; Neurons ; drug effects ; pathology ; Nitriles ; toxicity ; Pyrethrins ; toxicity
5.Research of fenvalerate induced neurodevelopmental toxicity by interfering with the action of estrogen.
Zhen LYU ; Qunan WANG ; Linling LU ; Xin XIA ; Long ZHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2014;32(7):487-492
OBJECTIVETo investigate the estrogen interference property of fenvalerate in neurodevelopmental toxicity.
METHODSThirty 4-week-old healthy female ICR mice were randomly divided into 6 groups: sham operation group, ovariectomized control group, ovariectomized with estrogen (10 µg/g) group, ovariectomized with fenvalerate (5 µg/g) group, sham operation with fenvalerate group, and ovariectomized with estrogen and fenvalerate group, with 5 mice in each group. Fenvalerate was injected intraperitoneally once a day for 7 consecutive days. Mice were sacrificed at 24 h after the last exposure to separate the hippocampus. Immunofluorescence was used to detect neuron marker (NeuN) and astrocyte marker (GFAP) in hippocampal CA1, CA3, and DG regions.
RESULTSCompared with the sham operation group (numbers of NeuN-positive cells: CA1 (54.00±1.73), CA3 (59.00 ± 1.73), DG (100.00 ± 4.58)), the sham operation with fenvalerate group (CA1 (37.67 ± 2.08), CA3 (41.33 ± 1.15), DG (80.67±0.58)) and ovariectomized control group (CA1 (44.00 ± 3.00), CA3 (51.00 ± 3.00), DG (83.00 ± 1.72)) showed significant decreases in number of neurons (NeuN-positive cells) in the hippocampus (P < 0.05). Compared with the ovariectomized control group, the ovariectomized with fenvalerate group (CA1 (47.67 ± 3.21), CA3 (49.00 ± 1.73), DG (87.33 ± 4.04)) showed no significant change in number of hippocampal NeuN-positive cells. Compared with the ovariectomized with fenvalerate group (CA1 (47.67 ± 3.21), DG (87.33 ± 4.04)), the sham operation with fenvalerate group and ovariectomized with estrogen and fenvalerate group (CA1 (40.00 ± 1.00), DG (78.67 ± 2.31)) experienced significant decreases in NeuN-positive cells (P < 0.05). Compared with the sham operation group (CA3 (11.00 ± 1.12), DG (10.67 ± 1.15)), the sham operation with fenvalerate group (CA3 (18.67 ± 2.07), DG (16.33 ± 1.53)) showed significant increase in number of astrocytes (GFAP-positive) cells (P < 0.05). Compared with the sham operation with fenvalerate group, the ovariectomized with fenvalerate group (CA3 (12.00 ± 1.00), DG (11.68 ± 1.16)) showed significant decrease in GFAP-positive cells (P < 0.05). Compared with the ovariectomized with fenvalerate group, the sham operation with fenvalerate group and ovariectomized with estrogen and fenvalerate group (CA3 (16.67 ± 2.13), DG (15.38 ± 1.42)) showed significant increases in GFAP-positive cells (P < 0.05).
CONCLUSIONThe interference with circulating estrogen is an important mechanism underlying the neurodevelopmental toxicity of fenvalerate.
Animals ; Estrogens ; pharmacology ; Female ; Hippocampus ; drug effects ; pathology ; Mice ; Mice, Inbred ICR ; Neurons ; drug effects ; pathology ; Nitriles ; toxicity ; Ovariectomy ; Pyrethrins ; toxicity
6.Study on the mechanism of di-2-ethylhexyl phthalate and cypermethrin inducing gonadal dysgenesis in the prepubertal male rats.
Lianlian GAO ; Xiangting LI ; Depei CAI
Chinese Journal of Industrial Hygiene and Occupational Diseases 2014;32(3):195-201
OBJECTIVETo investigate the mechanism of di-2-ethylhexyl phthalate (DEHP) and cypermethrin (CYP) inducing gonadal dysgenesis in prepubertal male rats.
METHODSA total of 40 healthy 3-week-old specific pathogen-free male Sprague-Dawley rats were randomly and equally divided into four groups: control group (corn oil), DEHP group (500 mg/kg, dissolved in corn oil), CYP group (80 mg/kg, dissolved in corn oil), and combined exposure group (exposed to 500 mg/kg DEHP and 80 mg/kg CYP, dissolved in corn oil). Rats were treated by gavage administration once a day for 30 days. Twenty-four hours after the last exposure, the animals were sacrificed. The body weight and the wet weight of testis were determined, and the weight coefficient of testis was calculated. Radioimmunoassay was used to determine serum testosterone level. Ultrastructural-level histopathological changes of the testis were examined by transmission electron microscopy. The mRNA and protein expression of follicle stimulating hormone receptor (FSHR), androgen binding protein (ABP), inhibin beta-B (INHBB) and vimentin (VIM) were analyzed by real-time PCR and Western blot, respectively. Factorial design analysis of variance was used to compare differences between groups; interaction diagrams were used to determine the interaction between DEHP and CYP.
RESULTSCompared with those of the control group, the testis weights and testis coefficients of the DEHP, CYP, and combined exposure groups significantly decreased by 39.3-59.2%and 19.7-58.6%, respectively, and all exposure groups showed significant reductions in serum level of testosterone, ranging from 49.1% to 62.7% (P < 0.05 or P < 0.01). And all the exposure groups showed different levels of ultrastructural damages in the testes. Compared with that in the control group, the mRNA expression of FSHR, ABP, INHBB, and VIMin the DEHP group was down-regulated by 1.72, 2.64, 2.83 and 1.79 times, and their protein levels were significantly reduced by 65.2%, 53.7%, 70.1%, and 51.9% (P < 0.05 or P < 0.01). Significant decreases in mRNA expression of ABP (down 1.72 times) and INHBB (down 2.06 times) were observed in the CYP group, and their protein levels decreased by 38.3% and 49.7%, respectively (P < 0.05). The combined exposure to both DEHP and CYP resulted in big decreases in the mRNA levels of FSHR (down 1.62 times), ABP (down 2.00 times), INHBB (down 2.35 times), and VIM (down 1.54 times) and protein levels of FSHR (down 52.1%), INHBB (down 53.9%), and VIM (down 58.8%) (P < 0.05). Factorial design analysis of variance showed that the combination of two substances had an antagonistic effect on the expression of ABP and INHBB (P < 0.05).
CONCLUSIONDEHP and CYP, alone or combined, can lead to gonadal dysgenesis in prepubertal male rats. Both of them can disrupt functional mRNA and protein expression in Sertoli cells to certain levels. The combination of DEHP and CYP shows antagonistic effects, and DEHP has a stronger reproductive toxicity than CYP.
Animals ; Diethylhexyl Phthalate ; toxicity ; Gonadal Dysgenesis ; chemically induced ; Male ; Pyrethrins ; toxicity ; Rats ; Rats, Sprague-Dawley ; Sertoli Cells ; metabolism ; Testis ; cytology ; drug effects
7.Oxidative stress, biochemical and histopathological alterations in the liver and kidney of female rats exposed to low doses of deltamethrin (DM): a molecular assessment.
Issam CHARGUI ; Intissar GRISSA ; Fatma BENSASSI ; Mohamed Yahia HRIRA ; Samir HAOUEM ; Zohra HAOUAS ; Hassen BENCHEIKH
Biomedical and Environmental Sciences 2012;25(6):672-683
OBJECTIVETo evaluate histopathological alterations of the liver and kidney of female rats exposed to low doses of DM and its potential genotoxic activity.
METHODSFemale Wistar rats were randomly assigned to control (3 groups, 6 rats in each) and treatment groups (3 groups, 6 rats in each). They were subjected to subcutaneous injections of DM (at doses of 0.003, 0.03, and 0.3 mg/kg bw/d) after 30, 45, and 60 d, respectively.
RESULTSSignificant alterations were recorded in liver parenchyma induced by hepatic vacuolization, fragmented chromatin in nuclei, dilatation of sinusoids and congestions. Lesions within proximal and distal tubules were observed in the kidneys. Tissue congestions and severe alterations within glomeruli were visible. DM as a pyrethroid insecticide induced significant increase (P≤0.05) of plasma MDA concentrations after 45 d. A significant increase (P≤0.05) in plasma ALT (after 45 and 60 d) and AST (after 60 d) concentrations was recorded as compared to controls. During the whole experimental period the toxic agent provoked significant DNA damages (P≤0.05), especially in the dominance of classes 3 and 4 of obtained comet.
CONCLUSIONDM even at a very low dose displays harmful effects by disrupting hepatic and renal function and causing DNA damages in puberscent female rats. Low doses of DM are hepatotoxic and nephrotoxic.
Animals ; Aspartate Aminotransferases ; metabolism ; Behavior, Animal ; drug effects ; Chemical and Drug Induced Liver Injury ; metabolism ; pathology ; Creatinine ; blood ; Dose-Response Relationship, Drug ; Female ; Insecticides ; administration & dosage ; chemistry ; toxicity ; Kidney ; drug effects ; Kidney Diseases ; chemically induced ; pathology ; Liver ; drug effects ; Malondialdehyde ; Molecular Structure ; Nitriles ; administration & dosage ; chemistry ; toxicity ; Organ Size ; Oxidative Stress ; drug effects ; Pyrethrins ; administration & dosage ; chemistry ; toxicity ; Random Allocation ; Rats ; Urea ; blood ; Weight Gain ; drug effects
9.Effects of maternal cypermethrin exposure during lactation on learning and memory ability in adult female offspring.
Heng ZHANG ; Hua WANG ; De-xiang XU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2012;30(9):672-675
OBJECTIVETo explore the effect of maternal cypermethrin exposure during lactation on learning and memory ability in adult female offspring, as well as the possible mechanism.
METHODSTwelve maternal mice were randomly divided into 6.25 mg/kg cypermethrin, 25.0 mg/kg cypermethrin and control groups (four dams each group, ten pups each dam, half male half female, twenty female pups each group). Maternal mice were orally administered with different doses of cypermethrin (6.25 and 25 mg/kg/d) once daily from postnatal day1 (PND1) to PND21. Maternal mice in control group were treated with corn oil. The learning and memory ability of female offspring were observed by using water labyrinth task for continuously seven days on PND60. All the female offspring were killed and the brain and hippocampus were detached after the test. The expression level of NMDA receptor NR1 protein in hippocampus was detected by Western-blotting.
RESULTSThere were no statistically significant in the difference in weight of body and brain among three groups (P > 0.05). Through the Repeated one way ANOVA, the learning time of latency in the 25.0 mg/kg cypermethrin group [(31.3 ± 17.0) s] were significantly longer than that in the control group [(21.0 ± 14.0) s] (P < 0.05). The memory time of latency in the 25.0 mg/kg cypermethrin group [(24.6 ± 21.1) s] were significantly longer than that in the control group [(14.1 ± 16.3) s] (P < 0.05). However, the difference of the wrong number among groups was not statistically significant in the test (P > 0.05).
CONCLUSIONMaternal cypermethrin exposure during lactation disturbs learning and memory ability in adult female offspring in a degree, which maybe caused by the reduction of protein level of hippocampus NR1.
Animals ; Animals, Newborn ; Female ; Male ; Maternal Exposure ; Maze Learning ; Memory ; Mice ; Mice, Inbred ICR ; Pregnancy ; Pyrethrins ; toxicity
10.Recent international initiatives of drug safety management.
Nam Kyong CHOI ; Joongyub LEE ; Byung Joo PARK
Journal of the Korean Medical Association 2012;55(9):819-826
Adverse drug reactions constitute a major public health problem. In recent years, serious safety issues arose with marketed drugs, and public outcry demanded better safety surveillance. Now regulatory focus is shifting to the active post-marketing safety surveillance. This paper provides an overview of the recent international initiatives of drug safety management especially focused on the US and Europe. The US Food and Drug Administration's (FDA) Sentinel Initiative is a long-term program designed to build and implement a national electronic system for monitoring the safety of FDA-approved drugs and other medical products. The Sentinel System will enable FDA to monitor the safety of medical products with the assistance of a wide array of collaborating institutions throughout the nation. The European Network of Centers for Pharmacoepidemiology and Pharmacovigilance is a collaborative scientific network coordinated by the European Medicines Agency and developed in collaboration with European experts in the fields of pharmacoepidemiology and pharmacovigilance. Its goal is to further strengthen the post-marketing monitoring of medicinal products in Europe by facilitating the conduct of multi-center, independent, post-authorization studies focusing on safety and on benefit-risk. Medicine is a global enterprise that demands worldwide standards for good drug safety practices. In the near future, we have to establish a Korean Sentinel System for active post-marketing safety surveillance to ensure the safety and effectiveness of drugs used in medical practice.
Cooperative Behavior
;
Dietary Sucrose
;
Drug Toxicity
;
Electronics
;
Electrons
;
Europe
;
Nitriles
;
Organothiophosphorus Compounds
;
Pharmacoepidemiology
;
Pharmacovigilance
;
Public Health
;
Pyrethrins
;
Safety Management

Result Analysis
Print
Save
E-mail