1.Comparison of glucose fluctuation between metformin combined with acarbose or sitagliptin in Chinese patients with type 2 diabetes: A multicenter, randomized, active-controlled, open-label, parallel design clinical trial.
Xiaoling CAI ; Suiyuan HU ; Chu LIN ; Jing WU ; Junfen WANG ; Zhufeng WANG ; Xiaomei ZHANG ; Xirui WANG ; Fengmei XU ; Ling CHEN ; Wenjia YANG ; Lin NIE ; Linong JI
Chinese Medical Journal 2025;138(9):1116-1125
BACKGROUND:
Alpha-glucosidase inhibitors or dipeptidyl peptidase-4 inhibitors are both hypoglycemia agents that specifically impact on postprandial hyperglycemia. We compared the effects of acarbose and sitagliptin add on to metformin on time in range (TIR) and glycemic variability (GV) in Chinese patients with type 2 diabetes mellitus through continuous glucose monitoring (CGM).
METHODS:
This study was a randomized, open-label, active-con-trolled, parallel-group trial conducted at 15 centers in China from January 2020 to August 2022. We recruited patients with type 2 diabetes aged 18-65 years with body mass index (BMI) within 19-40 kg/m 2 and hemoglobin A1c (HbA1c) between 6.5% and 9.0%. Eligible patients were randomized to receive either metformin combined with acarbose 100 mg three times daily or metformin combined with sitagliptin 100 mg once daily for 28 days. After the first 14-day treatment period, patients wore CGM and entered another 14-day treatment period. The primary outcome was the level of TIR after treatment between groups. We also performed time series decomposition, dimensionality reduction, and clustering using the CGM data.
RESULTS:
A total of 701 participants received either acarbose or sitagliptin treatment in combination with metformin. There was no statistically significant difference in TIR between the two groups. Time below range (TBR) and coefficient of variation (CV) levels in acarbose users were significantly lower than those in sitagliptin users. Median (25th percentile, 75th percentile) of TBR below target level <3.9 mmol/L (TBR 3.9 ): Acarbose: 0.45% (0, 2.13%) vs . Sitagliptin: 0.78% (0, 3.12%), P = 0.042; Median (25th percentile, 75th percentile) of TBR below target level <3.0 mmol/L (TBR 3.0 ): Acarbose: 0 (0, 0.22%) vs . Sitagliptin: 0 (0, 0.63%), P = 0.033; CV: Acarbose: 22.44 ± 5.08% vs . Sitagliptin: 23.96 ± 5.19%, P <0.001. By using time series analysis and clustering, we distinguished three groups of patients with representative metabolism characteristics, especially in GV (group with small wave, moderate wave and big wave). No significant difference was found in the complexity of glucose time series index (CGI) between acarbose users and sitagliptin users. By using time series analysis and clustering, we distinguished three groups of patients with representative metabolism characteristics, especially in GV.
CONCLUSIONS:
Acarbose had slight advantages over sitagliptin in improving GV and reducing the risk of hypoglycemia. Time series analysis of CGM data may predict GV and the risk of hypoglycemia.
TRIAL REGISTRATION
Chinese Clinical Trial Registry: ChiCTR2000039424.
Humans
;
Metformin/therapeutic use*
;
Sitagliptin Phosphate/therapeutic use*
;
Acarbose/therapeutic use*
;
Diabetes Mellitus, Type 2/blood*
;
Middle Aged
;
Male
;
Female
;
Adult
;
Blood Glucose/drug effects*
;
Hypoglycemic Agents/therapeutic use*
;
Aged
;
Glycated Hemoglobin/metabolism*
;
Adolescent
;
Young Adult
;
China
;
East Asian People
2.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
3.Establishment of a Bortezomib-Resistant Multiple Myeloma Xenotransplantation Mouse Model by Transplanting Primary Cells from Patients.
Yan-Hua YUE ; Yi-Fang ZHOU ; Ying-Jie MIAO ; Yang CAO ; Fei WANG ; Yue LIU ; Feng LI ; Yang-Ling SHEN ; Yan-Ting GUO ; Yu-Hui HUANG ; Wei-Ying GU
Journal of Experimental Hematology 2025;33(1):133-141
OBJECTIVE:
To explore the construction method of a resistant multiple myeloma (MM) patient-derived xenotransplantation (PDX) model.
METHODS:
1.0×107 MM patient-derived mononuclear cells (MNCs), 2.0×106 MM.1S cells and 2.0×106 NCI-H929 cells were respectively subcutaneously inoculated into NOD.CB17-Prkdcscid Il2rgtm1/Bcgen (B-NDG) mice with a volume of 100 μl per mouse to establish mouse model. The morphologic, phenotypic, proliferative and genetic characteristics of PDX tumor were studied by hematoxylin-eosin staining, immunohistochemical staining (IHC), cell cycle analysis, flow cytometry and fluorescence in situ hybridization (FISH). The sensitivity of PDX tumor to bortezomib and anlotinib monotherapy or in combination was investigated through cell proliferation, apoptosis and in vitro and in vivo experiments. The effects of anlotinib therapy on tumor blood vessel and cell apoptosis were analyzed by IHC, TUNEL staining and confocal fluorescence microscope.
RESULTS:
MM PDX model was successfully established by subcutaneously inoculating primary MNCs. The morphologic features of tumor cells from MM PDX model were similar to those of mature plasma cells. MM PDX tumor cells positively expressed CD138 and CD38, which presented 1q21 amplification, deletion of Rb1 and IgH rearrangement, and had a lower proliferative activity than MM cell lines. in vitro, PDX, MM.1S and NCI-H929 cells were treated by bortezomib and anlotinib for 24 hours, respectively. Cell viability assay showed that the IC50 value of bortezomib were 5 716.486, 1.025 and 2.775 nmol/L, and IC50 value of anlotinib were 5 5107.337, 0.706 and 5.13 μmol/L, respectively. Anlotinib treatment increased the apoptosis of MM.1S cells (P < 0.01), but did not affect PDX tumor cells (P >0.05). in vivo, there was no significant difference in PDX tumor growth between bortezomib monotherapy group and control group (P >0.05), while both anlotinib monotherapy and anlotinib combined with bortezomib effectively inhibited PDX tumor growth (both P < 0.05). The vascular perfusion and vascular density of PDX tumor were decreased in anlotinib treatment group (both P < 0.01). The apoptotic cells in anlotinib treatment group were increased compared with those in control group (P < 0.05).
CONCLUSION
Bortezomib-resistant MM PDX model can be successfully established by subcutaneous inoculation of MNCs from MM patients in B-NDG mice. This PDX model, which retains the basic biological characteristics of MM cells, can be used to study the novel therapies.
Animals
;
Bortezomib
;
Humans
;
Multiple Myeloma/pathology*
;
Mice
;
Apoptosis
;
Drug Resistance, Neoplasm
;
Cell Line, Tumor
;
Xenograft Model Antitumor Assays
;
Mice, Inbred NOD
;
Disease Models, Animal
;
Cell Proliferation
;
Transplantation, Heterologous
4.Effects of Bortezomib Combined with Polyphyllin Ⅶ on Proliferation, Apoptosis and Oxidative Stress of Myeloma Cells.
Ou-Xiao JI ; Yao FU ; Yu-Qing SUN ; Li-Juan WANG
Journal of Experimental Hematology 2025;33(3):802-809
OBJECTIVE:
To investigate the effects of bortezomib (BTZ) combined with polyphyllin Ⅶ (PP7) on proliferation, apoptosis and oxidative stress of myeloma cell line ARH-77.
METHODS:
MTT assay was used to detect the inhibitory effects of different concentrations of BTZ, PP7 monotherapy, and their combination on the proliferation of ARH-77 cells. In subsequent experiments, the cells were divided into 4 groups: control group (no drug added), BTZ (15 nmol/L) group, PP7 (1.5 μmol/L) group and BTZ(15 nmol/L)+PP7 (1.5 μmol/L) group. The effects of the two drugs on the morphology of ARH-77 cells were observed. Flow cytometry was used to detect the apoptosis rate of the cells in each group. Calcein-AM/PI double staining kit was used to observe the status of the cells and the cell viability were evaluated. The expression of apoptosis-related proteins were detected by Western blot. DCFH-DA fluorescent probe was used to detect the levels of reactive oxygen species (ROS).
RESULTS:
Both BTZ and PP7 monotherapy, as well as their combination, could inhibit the growth of ARH-77 cells in a dose-dependent manner (rBTZ=-0.9717, rPP7=-0.9941, rBTZ+PP7=-0.9951), and the combination of BTZ and PP7 exhibited a synergistic effect within a certain concentration range. Compared with the BTZ group and PP7 group, the apoptosis rate of the BTZ+PP7 group was significantly increased (P < 0.01), the expressions of pro-apoptotic proteins Bax, Smac and P53 were significantly upregulated (P < 0.05), the expression of anti-apoptotic protein Bcl-2 was significantly downregulated (P < 0.01), and the ratio of Bax/Bcl-2 was significantly increased (P < 0.01). Compared with the control group, the level of ROS in the BTZ, PP7 monotherapy group and BTZ+PP7 group were significantly increased (P < 0.05).
CONCLUSION
BTZ combined with PP7 can inhibit the proliferation and induce apoptosis of ARH-77 cells, and increase the level of intracellular ROS.
Apoptosis/drug effects*
;
Bortezomib
;
Humans
;
Cell Proliferation/drug effects*
;
Oxidative Stress/drug effects*
;
Multiple Myeloma/metabolism*
;
Cell Line, Tumor
;
Saponins/pharmacology*
5.Construction of a Prognostic Risk Prediction Model for Multiple Myeloma Patients after Bortezomib Treatment Based on Decision Tree Algorithm.
Tao JIANG ; Yuan LUO ; Huan WANG ; Hui LI
Journal of Experimental Hematology 2025;33(5):1386-1391
OBJECTIVE:
To explore the influencing factors on the prognosis of patients with multiple myeloma (MM) after bortezomib treatment, and construct a decision tree risk prediction model based on the influencing factors.
METHODS:
One hundred and seventy MM patients admitted to the People's Hospital of Jianyang City from January 2019 to June 2022 were selected as research subjects, and divided into poor prognosis group and good prognosis group according to the prognosis after bortezomib treatment. The clinical data of the patients were analyzed, univariate and logistic regression analysis were used to screen influencing factors, SPSS Modeler software was used to construct a decision tree prediction model, and the diagnostic performance of the decision tree risk prediction model was analyzed.
RESULTS:
The incidence of poor prognosis in 170 MM patients after bortezomib-based chemotherapy was 21.18%. Kappa light chain level≥19.4 mg/L, platelet count (PLT) ≤100×109/L, homocysteine (Hcy) >22 μmol/L, serum creatinine (Scr) ≥176 μmol/L, lactate dehydrogenase (LDH) ≥300 U/L, serum ferritin (SF) >500 mg/L, and β2-microglobulin (MG) >6 μg/L were independent risk factors for poor prognosis in MM patients after bortezomib treatment (all P < 0.05). The decision tree model selected 7 explanatory variables (Kappa light chain level, LDH, PLT, SF, β2-MG, Scr, and Hcy) as nodes of the model, among which Kappa light chain level was the most important predictor. In addition, the area under the ROC curve (AUC) values of the decision tree model and logistic regression model were 0.895 and 0.881, respectively. The prediction performance of the decision tree model was better than that of the logistic regression model ( Z=3.325, P =0.005).
CONCLUSION
The decision tree model has high value in predicting the prognosis after bortezomib treatment in MM patients, which can screen high-risk factors that affect poor prognosis, providing practical references for clinical healthcare professionals to take preventive treatment for high-risk MM patients.
Humans
;
Bortezomib/therapeutic use*
;
Multiple Myeloma/diagnosis*
;
Decision Trees
;
Prognosis
;
Algorithms
;
Risk Factors
;
Male
;
Female
;
Middle Aged
6.Regulatory Mechanism of Mangiferin Combined with Bortezomib on Malignant Biological Behavior of Burkitt Lymphoma and Its Effect on Expression of CXC Chemokine Receptors.
Zhi-Min YAN ; Yan-Quan LIU ; Qing-Lin XU ; Jie LIN ; Xin LIU ; Qiu-Ping ZHU ; Xin-Ji CHEN ; Ting-Bo LIU ; Xiao-Lan LIAN
Journal of Experimental Hematology 2023;31(5):1394-1402
OBJECTIVE:
To analyze the effects of mangiferin combined with bortezomib on the proliferation, invasion, apoptosis and autophagy of human Burkitt lymphoma Raji cells, as well as the expression of CXC chemokine receptors (CXCRs) family, and explore the molecular mechanism between them to provide scientific basis for basic research and clinical work of Burkitt lymphoma.
METHODS:
Raji cells were intervened with different concentrations of mangiferin and bortezomib alone or in combination, then cell proliferation was detected by CCK-8 assay, cell invasion ability was detected by Transwell chamber method, cell apoptosis was detected by Annexin V/PI double-staining flow cytometry, apoptosis, autophagy and Akt/mTOR pathway protein expression were detected by Western blot, and the expression changes of CXCR family was detected by real-time quantitative PCR (RT-qPCR).
RESULTS:
Different concentrations of mangiferin intervened Raji cells for different time could inhibit cell viability in a concentration- and time-dependent manner (r =-0.682, r =-0.836). When Raji cells were intervened by combination of mangiferin and bortezomib, compared with single drug group, the proliferation and invasion abilities were significantly decreased, while the apoptosis level was significantly increased (P <0.01). Mangiferin combined with bortezomib could significantly up-regulate the expression of pro-apoptotic protein Bax and down-regulate the expression of anti-apoptotic protein Bcl-2 after intervention in Raji cells. Caspase-3 was also hydrolyzed and activated, and then induced the apoptosis of Raji cells. Mangiferin combined with bortezomib could up-regulate the expression of LC3Ⅱ protein in Raji cells, and the ratio of LC3Ⅱ/LC3Ⅰ in cells was significantly up-regulated compared with single drug or control group (P <0.01). Mangiferin combined with bortezomib could significantly inhibit the phosphorylation levels of Akt and mTOR, inhibit the proliferation and invasion of Raji cells by inhibiting Akt/mTOR pathway, and induce cell autophagy and apoptosis. Mangiferin and bortezomib could down-regulate the expressions of CXCR4 and CXCR7 mRNA after single-agent intervention in Raji cells, and the down-regulations of CXCR4 and CXCR7 mRNA expression were more significant when the two drugs were combined (P <0.01). Mangiferin alone or combined with bortezomib had no significant effect on CXCR5 mRNA expression in Raji cells (P >0.05), while the combination of the two drugs could down-regulate the expression of CXCR3 (P <0.05).
CONCLUSION
Mangiferin combined with bortezomib can synergistically inhibit the proliferation and invasion of Raji cells, and induce autophagy and apoptosis. The mechanism may be related to the inhibition of Akt/mTOR signaling pathway, down-regulation of anti-apoptotic protein Bcl-2 and up-regulation of pro-apoptotic protein Bax, and the inhibition of the expression of CXCR family.
Humans
;
Antineoplastic Agents/therapeutic use*
;
Apoptosis/drug effects*
;
Apoptosis Regulatory Proteins/immunology*
;
Autophagy/immunology*
;
bcl-2-Associated X Protein/immunology*
;
Bortezomib/therapeutic use*
;
Burkitt Lymphoma/immunology*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Drug Therapy, Combination
;
Proto-Oncogene Proteins c-akt
;
Proto-Oncogene Proteins c-bcl-2
;
Receptors, CXCR/immunology*
;
RNA, Messenger
;
TOR Serine-Threonine Kinases
;
Xanthones/therapeutic use*
7.Research Progress on Mechanism of Bortezomib Resistance in Multiple Myeloma.
Journal of Experimental Hematology 2023;31(5):1584-1587
Multiple myeloma (MM) is a common plasma cell malignancy, accounting for the second largest hematological malignancy. Proteasome inhibitors represented by bortezomib (BTZ) have been the main treatment for patients with newly diagnosed and relapsed or refractory myeloma in nearly two decades. Although BTZ has improved the prognosis of MM patients, MM remains incurable in most patients, mainly because MM cells become resistant to BTZ. This review is to better understand the mechanism of MM resistance to BTZ and explore possible new therapeutic strategies.
Humans
;
Bortezomib/therapeutic use*
;
Multiple Myeloma/pathology*
;
Proteasome Inhibitors/pharmacology*
;
Prognosis
;
Plasma Cells/pathology*
;
Drug Resistance, Neoplasm
;
Antineoplastic Agents/pharmacology*
;
Cell Line, Tumor
8.Establishment of Patient-Derived Xenograft (PDX) Zebrafish Model of Multiple Myeloma and Its Application in Drug Screening.
Zhen YU ; Ying LI ; Ke-Fei WANG ; Lu WANG ; Mu HAO
Journal of Experimental Hematology 2023;31(6):1745-1749
OBJECTIVE:
To establish a MM patient-derived tumor xenograft model (MM-PDX) in zebrafish, and to evaluate the anti-myeloma activity of indirubin-3'-monoxime(I3MO) using this model.
METHODS:
Zebrafish embryos 2 days after fertilization were transplanted with fluorescence labeled myeloma primary tumor cells, the survival of primary tumor cells in zebrafish was observed at 0,16 and 24 hours after cell injection. The zebrafish embryos after tumor cell transplantation were randomly divided into control group, BTZ treatment and I3MO treatment group. Before and 24 hours after treatment with BTZ and I3MO, the positive area with calcein or Dil in zebrafish were observed under fluorescence microscope to reflect the survival of tumor cells, and it was verified.
RESULTS:
MM patient derived tumor cells survived in zebrafish. The construction of MM-PDX was successful. Compared with control group, the fluo- rescence area of the BTZ and I3MO treatment groups in zebrafish were significantly decreased(P<0.05), and BTZ and I3MO significantly inhibited the survival of MM cells in zebrafish.
CONCLUSION
MM-PDX model was successfully established. Zebrafish model derived from tumor cells of MM patients can be used as a tool for drug screening of MM.
Animals
;
Humans
;
Bortezomib/therapeutic use*
;
Cell Line, Tumor
;
Disease Models, Animal
;
Drug Evaluation, Preclinical
;
Heterografts
;
Multiple Myeloma/pathology*
;
Xenograft Model Antitumor Assays
;
Zebrafish
9.Preliminary Study on the Relationship between the Developmental Stage of Multiple Myeloma Disease and the Results of Bone Marrow Whole Exome Sequencing.
Qing-Zhao LI ; Hu ZHAO ; Hai-Mei CHEN ; Huang HUANG ; Juan PENG ; Guo-Yu HU ; Chan-Juan SHEN ; Zhao-Hui YUAN
Journal of Experimental Hematology 2023;31(6):1750-1756
OBJECTIVE:
To investigate the genetic results of whole exome sequencing of bone marrow from new onset multiple myeloma (MM) patients to analyze the process of genetic clonal evolution in MM patients.
METHODS:
Genomic DNA was extracted from bone marrow samples of 15 MM patients and the whole exomes sequencing was performed using next generation sequencing technology. Using own buccal cells as germline controls, combinated with clinical information, the mutation profile of genes from high-risk asymptomatic myeloma to symptomatic myeloma were analyzed, and genes that may be associated with the efficacy and side effects of bortezomib were screened.
RESULTS:
Except for two patients in whom no peripheral neuropathy was observed after a short treatment period, other patients peripheral neuropathy developed of various degrees during treatment with bortezomib containing chemotherapy, and the vast majority of patients achieved remission after receiving this bortezomib-related chemotherapy regimen. All patients had comparable levels of the inherited mutations number, but the somatic mutations was correlated with disease evolution.
CONCLUSION
different gene "mutational spectra" exist in myeloma patients at different stages and are associated with progression through all stages of the disease.
Humans
;
Multiple Myeloma/drug therapy*
;
Bortezomib/therapeutic use*
;
Bone Marrow
;
Exome Sequencing
;
Mouth Mucosa
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
10.The influencing factors of renal response in newly diagnosed multiple myeloma patients with renal impairment.
Yu Hang SONG ; Fu Jing ZHANG ; Rong Rong HU ; Miao CHEN ; Chen YANG ; Wei WANG ; Yan QIN ; Dao Bin ZHOU ; Jun Ling ZHUANG
Chinese Journal of Hematology 2023;44(2):141-147
Objective: To investigate the causative factors of renal function in newly diagnosed multiple myeloma (MM) patients with renal inadequacy. Methods: 181 MM patients with renal impairment from August 2007 to October 2021 at Peking Union Medical College Hospital were recruited, whose baseline chronic kidney disease (CKD) stage was 3-5. Statistical analysis was performed based on laboratory tests, treatment regimens, hematological responses, and survival among various renal function efficacy groups. A logistic regression model was employed in multivariate analysis. Results: A total of 181 patients were recruited, and 277 patients with CKD stages 1-2 were chosen as controls. The majority choose the BCD and VRD regimens. The progression-free survival (PFS) (14.0 months vs 24.8 months, P<0.001) and overall survival (OS) (49.2 months vs 79.7 months, P<0.001) of patients with renal impairment was considerably shorter. Hypercalcemia (P=0.013, OR=5.654) , 1q21 amplification (P=0.018, OR=2.876) , and hematological response over a partial response (P=0.001, OR=4.999) were independent predictive factors for renal function response. After treatment, those with improvement in renal function had a longer PFS than those without (15.6 months vs 10.2 months, P=0.074) , but there was no disparity in OS (56.5 months vs 47.3 months, P=0.665) . Conclusion: Hypercalcemia, 1q21 amplification, and hematologic response were independent predictors of the response of renal function in NDMM patients with renal impairment. MM patients with CKD 3-5 at baseline still have worse survival. Improvement in renal function after treatment is attributed to the improvement in PFS.
Humans
;
Multiple Myeloma/drug therapy*
;
Bortezomib/therapeutic use*
;
Hypercalcemia
;
Prognosis
;
Chromosome Aberrations
;
Kidney/physiology*
;
Renal Insufficiency, Chronic
;
Retrospective Studies
;
Antineoplastic Combined Chemotherapy Protocols

Result Analysis
Print
Save
E-mail