1.Effect of electroacupuncture on intestinal flora in COPD rats based on gut-lung axis theory.
Daohong CHEN ; Ying CHEN ; Wenchuan QI ; Qian ZENG ; Ziyang ZHOU ; Ziwen WANG ; Yongjiang FANG ; Shuguang YU ; Ling ZHAO
Chinese Acupuncture & Moxibustion 2025;45(7):967-981
OBJECTIVE:
To observe the effect of electroacupuncture (EA) on the intestinal flora in rats with chronic obstructive pulmonary disease (COPD) and explore its possible mechanism based on the gut-lung axis theory.
METHODS:
A total of 30 male SD rats of SPF grade were randomly divided into a normal control (NC) group, a model group and an EA group, 10 rats in each one. In the model group and the EA group, COPD model was established by intratracheal instillation of lipopolysaccharide combined with cigarette fumigation. In the EA group, EA was applied at bilateral "Feishu" (BL13) and "Zusanli" (ST36), with disperse-dense waves, in frequency of 4 Hz/20 Hz, current of 1-3 mA, 20 min a time, once a day for 14 days continuously. Before and after modeling, as well as after intervention, body weight was observed; after intervention, the lung function indexes (forced expiratory volume in 0.1 second [FEV0.1], FEV0.1/forced vital capacity [FVC]%, forced expiratory volume in 0.3 second [FEV0.3] and FEV0.3/FVC%) were measured, serum levels of inflammatory factors (tumor necrosis factor-α[TNF-α], interleukin-6[IL-6], interleukin-1β[IL-1β] and interleukin-10[IL-10]) were detected by ELISA, histopathology of lung and colon tissues was observed by HE staining, the intestinal flora were analyzed by 16S rRNA, and the correlations between lung function and intestinal flora were analyzed.
RESULTS:
Compared with the NC group, in the COPD group, the body weight and lung function indexes were reduced (P<0.01); the lung and colon tissues were damaged, the mean linear intercept (MLI) of alveolus and inflammatory cell numbers of 100 μm2 in lung tissue were increased (P<0.01); the serum levels of TNF-α, IL-6 and IL-1β were increased (P<0.01, P<0.05), and the serum level of IL-10 was decreased (P<0.01); α-diversity indexes of intestinal flora were increased (P<0.01); the relative abundance of Bacteroidetes, Proteobacteria and Oscillospira, Bacteroides, Coprococcus was increased (P<0.01), the relative abundance of Firmicutes, Actinobacteria, Tenericutes, TM7 and Lactobacillus, Allobaculum, Bifidobacterium, YRC22 was decreased (P<0.01, P<0.05); 31 different expressed metabolic pathways were identified between the two groups. Compared with the COPD group, in the EA group, the body weight and lung function indexes were increased (P<0.01); the damage of lung and colon tissues was improved, the MLI of alveolus was decreased (P<0.05); the serum levels of TNF-α, IL-6 and IL-1β were decreased (P<0.05), and the serum level of IL-10 was increased (P<0.05); α-diversity indexes of intestinal flora were decreased (P<0.01); the relative abundance of Bacteroidetes, Proteobacteria and Oscillospira, Bacteroides, Coprococcus was decreased (P<0.01, P<0.05), the relative abundance of Firmicutes, Actinobacteria, Tenericutes, TM7 and Lactobacillus, Allobaculum, Bifidobacterium, YRC22 was increased (P<0.01); 35 different expressed metabolic pathways were identified between the two groups. The lung function was positive related with Actinobacteria, Tenericutes, TM7 and YRC22, and was negative related with Bacteroidetes, Proteobacteria and Oscillospira, Bacteroides, Coprococcus.
CONCLUSION
EA may ameliorate lung function and tissue injury of COPD by regulating intestinal flora dysbiosis and inflammatory response, suggesting an anti-inflammatory effect mediated via "gut-lung" axis.
Animals
;
Pulmonary Disease, Chronic Obstructive/genetics*
;
Male
;
Electroacupuncture
;
Rats
;
Rats, Sprague-Dawley
;
Lung/metabolism*
;
Gastrointestinal Microbiome
;
Humans
;
Interleukin-6/immunology*
;
Tumor Necrosis Factor-alpha/immunology*
;
Intestines/microbiology*
;
Interleukin-10/immunology*
2.Effects of alcoholic extract of Gnaphalium affine on oxidative stress and intestinal flora in rats with chronic obstructive pulmonary disease.
Da-Huai LIN ; Xiang-Li YE ; Guo-Hong YAN ; Kai-Ge WANG ; Yu-Qin ZHANG ; Huang LI
China Journal of Chinese Materia Medica 2025;50(15):4110-4119
The efficacy mechanism of the alcoholic extract of Gnaphalium affine was investigated by observing its influence on oxidative stress and intestinal flora in rats modeled for chronic obstructive pulmonary disease(COPD). UPLC-MS was used to evaluate the quality of the alcoholic extract of G. affine, and 72 rats were randomly divided into six groups, with COPD models established in five groups by cigarette smoke combined with airway drip lipopolysaccharide, and the rats were given the positive drug of Danlong Oral Solution, as well as low-, medium-, and high-doses alcoholic extract of G. affine, respectively. After two weeks of continuous gastric gavage, the body weights and general morphology observations were performed; HE staining and Masson staining were used to verify the effects of the alcoholic extract of G. affine on alveolar inflammation and collagen deposition area in COPD rats; the oxidative stress indexes CAT and GSH in serum and SOD and MDA in lung tissue of the rats were measured, and the mRNA expression of HO-1, Nrf2, and NQO1 were determined by qRT-PCR. The protein expressions of HO-1, Nrf2, and NQO1 were determined by the Western blot method, and the mechanism by which the alcoholic extract of G. affine affected oxidative stress in COPD rats was explored. Finally, the influence of G. affine on the changes in intestinal flora caused by COPD was studied by 16S rRNA sequencing. The results showed that a total of 121 chemical components were identified by UPLC-MS, including 70 positive and 51 negative ion modes. In animal experiments, it was found that the alcoholic extracts of G. affine were able to reduce the percentage of collagen deposition, affect the oxidative stress indexes such as CAT, GSH, SOD, MDA, as well as the mRNA and protein expression of Nrf2, HO-1, and NQO1. The 16S rRNA sequencing results showed an increase in the level of Lactobacillales and a decrease in the level of Desulfovibrio and Desulfovibrionales, suggesting that the alcoholic extracts of G. affine could reverse the changes in intestinal flora caused by COPD. In conclusion, the alcoholic extracts of G. affine may exert anti-COPD effects by affecting the oxidative stress pathway and modulating the changes in intestinal flora.
Animals
;
Oxidative Stress/drug effects*
;
Pulmonary Disease, Chronic Obstructive/genetics*
;
Rats
;
Male
;
Gastrointestinal Microbiome/drug effects*
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/administration & dosage*
;
NF-E2-Related Factor 2/metabolism*
;
Humans
;
Lung/metabolism*
3.CXCL12 is a potential therapeutic target for type 2 diabetes mellitus complicated by chronic obstructive pulmonary disease.
Huaiwen XU ; Li WENG ; Hong XUE
Journal of Southern Medical University 2025;45(1):100-109
OBJECTIVES:
To identify the key genes and immunological pathways shared by type 2 diabetes mellitus (T2DM) and chronic obstructive pulmonary disease (COPD) and explore the potential therapeutic targets of T2DM complicated by COPD.
METHODS:
GEO database was used for analyzing the gene expression profiles in T2DM and COPD to identify the common differentially expressed genes (DEGs) in the two diseases. A protein-protein interaction network was constructed to identify the candidate hub genes, which were validated in datasets and disease sets to obtain the target genes. The diagnostic accuracy of these target genes was assessed with ROC analysis, and their expression levels and association with pulmonary functions were investigated using clinical data and blood samples of patients with T2DM and COPD. The abundance of 22 immune cells was analyzed with CIBERSORT algorithm, and their relationship with the target genes was examined using correlation analysis. DGIdb database was used for analyzing the drug-gene interactions and the druggable genes followed by gene set enrichment analysis.
RESULTS:
We identified a total of 175 common DEGs in T2DM and COPD, mainly enriched in immune- and inflammation-related pathways. Among these genes, CXCL12 was identified as the final target gene, whose expression was elevated in both T2DM and COPD (P<0.05) and showed good diagnostic efficacy. Immune cell infiltration correlation analysis showed significant correlations of CXCL12 with various immune cells (P<0.01). GESA analysis showed that high CXCL12 expression was significantly correlated with "cytokine-cytokine receptor interaction". Drug-gene analysis showed that most of CXCL12-related drugs were not targeted drugs with significant cytotoxicity.
CONCLUSIONS
CXCL12 is a potential common key pathogenic gene of COPD and T2DM, and small-molecule targeted drugs against CXCL12 can provide a new strategy for treatment T2DM complicated by COPD.
Humans
;
Pulmonary Disease, Chronic Obstructive/complications*
;
Diabetes Mellitus, Type 2/genetics*
;
Chemokine CXCL12/metabolism*
;
Protein Interaction Maps
;
Gene Expression Profiling
4.Exploratory research on the probable shared molecular mechanism and transcription factors between chronic periodontitis and chronic obstructive pulmonary disease.
Chen ZHANG ; Zhenzhen HOU ; Yingrui ZONG
West China Journal of Stomatology 2023;41(5):533-540
OBJECTIVES:
To investigate possible cross-talk genes, associated pathways, and transcription factors between chronic periodontitis (CP) and chronic obstructive pulmonary disease (COPD).
METHODS:
The gene expression profiles of CP (GSE10334 and GSE16134) and COPD (GSE76925) were downloaded from the GEO database. Differential expression and functional clustering analyses were performed. The protein‑protein interaction (PPI) network was constructed. The core cross-talk genes were filtered using four topological analysis algorithms and modular segmentation. Then, functional clustering analysis was performed again.
RESULTS:
GSE10334 detected 164 differentially expressed genes (DEGs) (119 upregulated and 45 downregulated). GSE16134 identified 208 DEGs (154 upregulated and 54 downregulated). GSE76925 identified 1 408 DEGs (557 upregulated and 851 downregulated). The PPI network included 21 nodes and 20 edges. The final screening included seven cross-talk genes: CD79A, FCRLA, CD19, IRF4, CD27, SELL, and CXCL13. Relevant pathways included primary immunodeficiency, the B-cell receptor signaling pathway, and cytokine-cytokine receptor interaction.
CONCLUSIONS
This study indicates the probability of shared pathophysiology between CP and COPD, and their cross-talk genes, associated pathways, and transcription factors may offer novel concepts for future mechanistic investigations.
Humans
;
Chronic Periodontitis/genetics*
;
Gene Regulatory Networks
;
Gene Expression Profiling
;
Protein Interaction Maps/genetics*
;
Pulmonary Disease, Chronic Obstructive/genetics*
5.Compound Tinglizi Decoction intervenes COPD-associated pulmonary hypertension through regulation of HMGB1-mediated pyroptosis and immune imbalance.
Xin-Cheng WU ; Yu LIU ; Zheng-Ping BAI
China Journal of Chinese Materia Medica 2023;48(11):3055-3065
This paper aimed to investigate the effects of high mobility group box 1(HMGB1)-mediated pulmonary artery smooth muscle cell pyroptosis and immune imbalance on chronic obstructive pulmonary disease-associated pulmonary hypertension(COPD-PH) in rats and the intervening mechanism of Compound Tinglizi Decoction. Ninety rats were randomly divided into a normal group, a model group, low-dose, medium-dose, and high-dose Compound Tinglizi Decoction groups, and a simvastatin group. The rat model of COPD-PH was established by fumigation combined with lipopolysaccharide(LPS) intravascular infusion, which lasted 60 days. Rats in the low, medium, and high-dose Compound Tinglizi Decoction groups were given 4.93, 9.87, and 19.74 g·kg~(-1) Compound Tinglizi Decoction by gavage, respectively. Rats in the simvastatin group were given 1.50 mg·kg~(-1) simvastatin by gavage. After 14 days, the lung function, mean pulmonary artery pressure, and arterial blood gas of rats were analyzed. Lung tissues of rats were collected for hematoxylin-eosin(HE) staining to observe the pathological changes. Real-time fluorescent quantitative polymerase chain reaction(qRT-PCR) was used to determine the expression of related mRNA in lung tissues, Western blot(WB) was used to determine the expression of related proteins in lung tissues, and enzyme linked immunosorbent assay(ELISA) was used to determine the levels of inflammatory factors in the lung tissues of rats. The ultrastructure of lung cells was observed by transmission electron microscope. The forced vital capacity(FVC), forced expiratory volume in 0.3 second(FEV_(0.3)), FEV_(0.3)/FVC, peek expiratory flow(PEF), respiratory dynamic compliance(Cdyn), arterial partial pressure of oxygen(PaO_2), and arterial oxygen saturation(SaO_2) were increased, and resistance of expiration(Re), mean pulmonary arterial pressure(mPAP), right ventricular hypertrophy index(RVHI), and arterial partial pressure of carbon dioxide(PaCO_2) were decreased by Compound Tinglizi Decoction in rats with COPD-PH. Compound Tinglizi Decoction inhibited the protein expression of HMGB1, receptor for advanced glycation end products(RAGE), pro caspase-8, cleaved caspase-8, and gasdermin D(GSDMD) in lung tissues of rats with COPD-PH, as well as the mRNA expression of HMGB1, RAGE, and caspase-8. Pulmonary artery smooth muscle cell pyroptosis was inhibited by Compound Tinglizi Decoction. Interferon-γ(IFN-γ) and interleukin-17(IL-17) were reduced, and interleukin-4(IL-4) and interleukin-10(IL-10) were incresead by Compound Tinglizi Decoction in lung tissues of rats with COPD-PH. In addition, the lesion degree of trachea, alveoli, and pulmonary artery in lung tissues of rats with COPD-PH was improved by Compound Tinglizi Decoction. Compound Tinglizi Decoction had dose-dependent effects. The lung function, pulmonary artery pressure, arterial blood gas, inflammation, trachea, alveoli, and pulmonary artery disease have been improved by Compound Tinglizi Decoction, and its mechanism is related to HMGB1-mediated pulmonary artery smooth muscle cell pyroptosis and helper T cell 1(Th1)/helper T cell 2(Th2), helper T cell 17(Th17)/regulatory T cell(Treg) imbalance.
Animals
;
Rats
;
Caspase 8
;
Pyroptosis
;
HMGB1 Protein/genetics*
;
Hypertension, Pulmonary/etiology*
;
Pulmonary Disease, Chronic Obstructive/genetics*
6.Identification of novel candidate genes in East Asian COPD patients by the functional summary-based imputation and the unified test for molecular signatures: a transcriptome-wide association study.
Ye TIAN ; Shufang SHAN ; Qixue BAO ; Siquan ZHOU ; Xia JIANG ; Mengqiao WANG ; Shu YIN ; Jingyuan XIONG ; Guo CHENG
Chinese Medical Journal 2023;136(13):1612-1614
7.Association between chronic lung diseases and the risk of lung cancer in UK Biobank: observational and Mendelian randomization analyses.
Jing ZHANG ; Zhi Min MA ; Hui WANG ; Ya Ting FU ; Chen JI ; Meng ZHU ; Hong Bing SHEN ; Hong Xia MA
Chinese Journal of Preventive Medicine 2023;57(8):1147-1152
Objective: To investigate the association between chronic lung diseases and the risk of lung cancer. Methods: Using UK Biobank (UKB) survey data, 472 397 participants who had not previously been diagnosed with cancer and whose self-reported sex was consistent with their genetic sex were studied. Information on the prevalence of previous chronic lung diseases, general demographic characteristics and the prevalence of lung cancer was collected using baseline questionnaires and national health system data. The multivariate Cox proportional risk regression model was used to analyze the association between four previous chronic lung diseases (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and interstitial pulmonary disease) and the risk of lung cancer. A total of 458 526 participants with genotype data in the observational study were selected as research objects, and the closely related and independent genetic loci with four chronic lung diseases were selected as instrumental variables, and the association between four chronic lung diseases and the risk of lung cancer was analyzed by Mendelian randomization (MR). The dose-response relationship between genetic risk score and the risk of lung cancer in different chronic lung diseases was evaluated using a restricted cubic spline function. Results: The age [M (Q1, Q3)] of the subjects was 57 (50, 63) years old, and there were 3 516 new cases of lung cancer (0.74%) during follow-up. The multivariate Cox proportional hazard regression model analysis showed that previous chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis were associated with the risk of lung cancer, about 1.61 (1.49-1.75) and 2.61 (1.24-5.49), respectively. MR Studies showed that genetically predicted chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis were associated with the risk of lung cancer, with HR (95%CI) of 1.10 (1.03-1.19) and 1.04 (1.01-1.08), respectively. The results of restricted cubic spline function analysis showed that the risk of lung cancer increased linearly with the increase of genetic risk scores for chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis (P<0.05). Neither observational studies nor Mendelian randomization analysis found an association between previous asthma or interstitial lung disease and the risk of lung cancer (both P values>0.05). Conclusion: Chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis are potential risk factors for lung cancer.
Humans
;
Middle Aged
;
Mendelian Randomization Analysis
;
Biological Specimen Banks
;
Lung Neoplasms/genetics*
;
Pulmonary Disease, Chronic Obstructive/genetics*
;
Asthma/genetics*
;
Idiopathic Pulmonary Fibrosis/genetics*
;
United Kingdom/epidemiology*
;
Genome-Wide Association Study
8.Association between chronic lung diseases and the risk of lung cancer in UK Biobank: observational and Mendelian randomization analyses.
Jing ZHANG ; Zhi Min MA ; Hui WANG ; Ya Ting FU ; Chen JI ; Meng ZHU ; Hong Bing SHEN ; Hong Xia MA
Chinese Journal of Preventive Medicine 2023;57(8):1147-1152
Objective: To investigate the association between chronic lung diseases and the risk of lung cancer. Methods: Using UK Biobank (UKB) survey data, 472 397 participants who had not previously been diagnosed with cancer and whose self-reported sex was consistent with their genetic sex were studied. Information on the prevalence of previous chronic lung diseases, general demographic characteristics and the prevalence of lung cancer was collected using baseline questionnaires and national health system data. The multivariate Cox proportional risk regression model was used to analyze the association between four previous chronic lung diseases (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and interstitial pulmonary disease) and the risk of lung cancer. A total of 458 526 participants with genotype data in the observational study were selected as research objects, and the closely related and independent genetic loci with four chronic lung diseases were selected as instrumental variables, and the association between four chronic lung diseases and the risk of lung cancer was analyzed by Mendelian randomization (MR). The dose-response relationship between genetic risk score and the risk of lung cancer in different chronic lung diseases was evaluated using a restricted cubic spline function. Results: The age [M (Q1, Q3)] of the subjects was 57 (50, 63) years old, and there were 3 516 new cases of lung cancer (0.74%) during follow-up. The multivariate Cox proportional hazard regression model analysis showed that previous chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis were associated with the risk of lung cancer, about 1.61 (1.49-1.75) and 2.61 (1.24-5.49), respectively. MR Studies showed that genetically predicted chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis were associated with the risk of lung cancer, with HR (95%CI) of 1.10 (1.03-1.19) and 1.04 (1.01-1.08), respectively. The results of restricted cubic spline function analysis showed that the risk of lung cancer increased linearly with the increase of genetic risk scores for chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis (P<0.05). Neither observational studies nor Mendelian randomization analysis found an association between previous asthma or interstitial lung disease and the risk of lung cancer (both P values>0.05). Conclusion: Chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis are potential risk factors for lung cancer.
Humans
;
Middle Aged
;
Mendelian Randomization Analysis
;
Biological Specimen Banks
;
Lung Neoplasms/genetics*
;
Pulmonary Disease, Chronic Obstructive/genetics*
;
Asthma/genetics*
;
Idiopathic Pulmonary Fibrosis/genetics*
;
United Kingdom/epidemiology*
;
Genome-Wide Association Study
9.Advances and Application of Genomics in Chronic Obstructive Pulmonary Disease.
Lin-Fan SU ; Hong-Mei ZHAO ; Yi XIAO
Acta Academiae Medicinae Sinicae 2022;44(4):668-672
Chronic obstructive pulmonary disease (COPD) is a common and frequently-occurring disease in the department of respiratory medicine,the pathogenesis of which involves both environmental factors and genetic factors.In recent years,with the application of new methods such as genome-wide association study,researchers have discovered a large number of gene mutations associated with lung function and COPD,providing a new perspective on the pathogenesis of COPD and potential therapeutic targets.This article reviews the research achievements and application progress of genomics in COPD.
Genome-Wide Association Study/methods*
;
Genomics
;
Humans
;
Pulmonary Disease, Chronic Obstructive/genetics*
10.Symptomatic Radiation Pneumonitis in NSCLC Patients Receiving EGFR-TKIs and Concurrent Once-daily Thoracic Radiotherapy: Predicting the Value of Clinical and Dose-volume Histogram Parameters.
Xuexi YANG ; Ting MEI ; Min YU ; Youling GONG
Chinese Journal of Lung Cancer 2022;25(6):409-419
BACKGROUND:
The incidence of symptomatic radiation pneumonitis (RP) and its relationship with dose-volume histogram (DVH) parameters in non-small cell lung cancer (NSCLC) patients receiving epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) and concurrent once-daily thoracic radiotherapy (TRT) remain unclear. We aim to analyze the values of clinical factors and dose-volume histogram (DVH) parameters to predict the risk for symptomatic RP in these patients.
METHODS:
Between 2011 and 2019, we retrospectively analyzed and identified 85 patients who had received EGFR-TKIs and once-daily TRT simultaneously (EGFR-TKIs group) and 129 patients who had received concurrent chemoradiotherapy (CCRT group). The symptomatic RP was recorded according to the Common Terminology Criteria for Adverse Event (CTCAE) criteria (grade 2 or above). Statistical analyses were performed using SPSS 26.0.
RESULTS:
In total, the incidences of symptomatic (grade≥2) and severe RP (grade≥3) were 43.5% (37/85) and 16.5% (14/85) in EGFR-TKIs group vs 27.1% (35/129) and 10.1% (13/129) in CCRT group respectively. After 1:1 ratio between EGFR-TKIs group and CCRT group was matched by propensity score matching, chi-square test suggested that the incidence of symptomatic RP in the MATCHED EGFR-TKIs group was higher than that in the matched CCRT group (χ2=4.469, P=0.035). In EGFR-TKIs group, univariate and multivariate analyses indicated that the percentage of ipsilateral lung volume receiving ≥30 Gy (ilV30) [odds ratio (OR): 1.163, 95%CI: 1.036-1.306, P=0.011] and the percentage of total lung volume receiving ≥20 Gy (tlV20) (OR: 1.171, 95%CI: 1.031-1.330, P=0.015), with chronic obstructive pulmonary disease (COPD) or not (OR: 0.158, 95%CI: 0.041-0.600, P=0.007), were independent predictors of symptomatic RP. Compared to patients with lower ilV30/tlV20 values (ilV30 and tlV20
Carcinoma, Non-Small-Cell Lung/radiotherapy*
;
ErbB Receptors/genetics*
;
Humans
;
Lung Neoplasms/radiotherapy*
;
Protein Kinase Inhibitors/adverse effects*
;
Pulmonary Disease, Chronic Obstructive/complications*
;
Radiation Pneumonitis/etiology*
;
Radiotherapy Dosage
;
Retrospective Studies

Result Analysis
Print
Save
E-mail