1.Progress on numerical simulation of the deposition of inhaled particles in human pulmonary acinus region.
Penghui LI ; Rong LI ; Yang QIAO ; Xinxi XU
Journal of Biomedical Engineering 2019;36(3):499-503
The inhalation and deposition of particles in human pulmonary acinus region can cause lung diseases. Numerical simulation of the deposition of inhaled particles in the pulmonary acinus region has offered an effective gateway to the prevention and clinical treatment of these diseases. Based on some important affecting factors such as pulmonary acinar models, model motion, breathing patterns, particulate characteristics, lung diseases and ages, the present research results of numerical simulation in human pulmonary acinus region were summarized and analyzed, and the future development directions were put forward in this paper, providing new insights into the further research and application of the numerical simulation in the pulmonary acinus region.
Aerosols
;
Computer Simulation
;
Humans
;
Lung
;
physiology
;
Models, Biological
;
Particle Size
;
Pulmonary Alveoli
;
physiology
2.Association between endoplasmic reticulum stress pathway mediated by inositol-requiring kinase 1 and AECII apoptosis in preterm rats induced by hyperoxia.
Hui-Min JU ; Hong-Yan LU ; Yan-Yu ZHANG ; Qiu-Xia WANG ; Qiang ZHANG
Chinese Journal of Contemporary Pediatrics 2016;18(9):867-873
OBJECTIVETo study the association between endoplasmic reticulum stress (ERS) pathway mediated by inositol-requiring kinase 1 (IRE1) and the apoptosis of type II alveolar epithelial cells (AECIIs) exposed to hyperoxia.
METHODSThe primarily cultured AECIIs from preterm rats were devided into an air group and a hyperoxia group. The model of hyperoxia-induced cell injury was established. The cells were harvested at 24, 48, and 72 hours after hyperoxia exposure. An inverted phase-contrast microscope was used to observe morphological changes of the cells. Annexin V/PI double staining flow cytometry was performed to measure cell apoptosis. RT-PCR and Western blot were used to measure the mRNA and protein expression of glucose-regulated protein 78 (GRP78), IRE1, X-box binding protein-1 (XBP-1), and C/EBP homologous protein (CHOP). An immunofluorescence assay was performed to measure the expression of CHOP.
RESULTSOver the time of hyperoxia exposure, the hyperoxia group showed irregular spreading and vacuolization of AECIIs. Compared with the air group, the hyperoxia group showed a significantly increased apoptosis rate of AECIIs and significantly increased mRNA and protein expression of GRP78, IRE1, XBP1, and CHOP compared at all time points (P<0.05). The hyperoxia group had significantly greater fluorescence intensity of CHOP than the air group at all time points. In the hyperoxia group, the protein expression of CHOP was positively correlated with the apoptosis rate of AECIIs and the protein expression of IRE1 and XBP1 (r=0.97, 0.85, and 0.88 respectively; P<0.05).
CONCLUSIONSHyperoxia induces apoptosis of AECIIs possibly through activating the IRE1-XBP1-CHOP pathway.
Animals ; Apoptosis ; Cells, Cultured ; Endoplasmic Reticulum Stress ; physiology ; Endoribonucleases ; physiology ; Epithelial Cells ; physiology ; Female ; Hyperoxia ; metabolism ; pathology ; Multienzyme Complexes ; physiology ; Protein-Serine-Threonine Kinases ; physiology ; Pulmonary Alveoli ; pathology ; Rats ; Rats, Sprague-Dawley ; Transcription Factor CHOP ; physiology ; X-Box Binding Protein 1 ; physiology
3.Effects of Alveolar Recruitment and Positive End-Expiratory Pressure on Oxygenation during One-Lung Ventilation in the Supine Position.
Yong Seon CHOI ; Mi Kyung BAE ; Shin Hyung KIM ; Ji Eun PARK ; Soo Young KIM ; Young Jun OH
Yonsei Medical Journal 2015;56(5):1421-1427
PURPOSE: Hypoxemia during one-lung ventilation (OLV) remains a serious problem, particularly in the supine position. We investigated the effects of alveolar recruitment (AR) and positive end-expiratory pressure (PEEP) on oxygenation during OLV in the supine position. MATERIALS AND METHODS: Ninety-nine patients were randomly allocated to one of the following three groups: a control group (ventilation with a tidal volume of 8 mL/kg), a PEEP group (the same ventilatory pattern with a PEEP of 8 cm H2O), or an AR group (an AR maneuver immediately before OLV followed by a PEEP of 8 cm H2O). The tidal volume was reduced to 6 mL/kg during OLV in all groups. Blood gas analyses, respiratory variables, and hemodynamic variables were recorded 15 min into TLV (TLVbaseline), 15 and 30 min after OLV (OLV15 and OLV30), and 10 min after re-establishing TLV (TLVend). RESULTS: Ultimately, 92 patients were analyzed. In the AR group, the arterial oxygen tension was higher at TLVend, and the physiologic dead space was lower at OLV15 and TLVend than in the control group. The mean airway pressure and dynamic lung compliance were higher in the PEEP and AR groups than in the control group at OLV15, OLV30, and TLVend. No significant differences in hemodynamic variables were found among the three groups throughout the study period. CONCLUSION: Recruitment of both lungs with subsequent PEEP before OLV improved arterial oxygenation and ventilatory efficiency during video-assisted thoracic surgery requiring OLV in the supine position.
Adult
;
Aged
;
Anoxia
;
Female
;
Humans
;
Lung/physiopathology
;
Lung Compliance/physiology
;
Male
;
Middle Aged
;
One-Lung Ventilation/*methods
;
Oxygen/*blood
;
Positive-Pressure Respiration/*methods
;
Pulmonary Alveoli/*physiology
;
Pulmonary Gas Exchange
;
Respiratory Mechanics/*physiology
;
*Supine Position
;
Thoracic Surgery, Video-Assisted
;
Tidal Volume
4.Roles of PKCβ/P66Shc oxidative stress signal pathway in mediating hyperoxia-induced ROS production in alveolar epithelial cells.
Zhong-Li CHE ; Wen-Bin DONG ; Qing-Ping LI ; Xiao-Ping LEI ; Lan KANG ; Lin GUO ; Xue-Song ZHAI ; Feng CHEN
Chinese Journal of Contemporary Pediatrics 2015;17(3):275-280
OBJECTIVETo explore the roles of PKCβ/P66Shc oxidative stress signal pathway in mediating hyperoxia-induced reactive oxgen species (ROS) production in alveolar epithelial cells (A549) and the protective effects of PKCβ inhibitor on hyperoxia-induced injuries of alveolar epithelial cells.
METHODSA549 cells were cultured in vitro and randomly divided into three groups: control, hyperoxia and PKCβ inhibitor LY333531 treatment. The hyperoxia group was exposed to a mixture of O2 (950 mL/L) and CO2 (50 mL/L) for 10 minutes and then cultured in a closed environment. The LY333531 group was treated with PKCβ inhibitor LY333531 of 10 µmol/L for 24 hours before hyperoxia induction. Cells were collected 24 hours after culture and the levels of PKCβ, Pin1, P66Shc and P66Shc-Ser36 were detected by Western blot. The intracellular translocation of P66Shc, the production of ROS and cellular mitochondria membrane potential were measured using the confocal microscopy.
RESULTSCompared with the control group, the levels of PKCβ, Pin1, P66Shc and P-P66Shc-Ser36 in A549 cells 24 hours after culture increased significantly in the hyperoxia group. These changes in the hyperoxia group were accompanied with an increased translocation rate of P66Shc from cytoplasm into mitochondria, an increased production of mitochondrial ROS, and a reduced mitochondrial membrane potential. Compared with the hyperoxia group, the levels of Pin1, P66Shc and P66Shc-Ser36 in A549 cells, the translocation rate of P66Shc from cytoplasm into mitochondria and the production of mitochondrial ROS decreased significantly, while the mitochondrial membrane potential increased significantly in the LY333531 treatment group. However, there were significant differences in the above mentioned measurements between the LY333531 treatment and control groups.
CONCLUSIONSHyperoxia can increase the expression of PKCβ in alveolar epithelial cells and production of mitochondrial ROS and decrease mitochondrial membrane potential. PKCβ inhibitor LY333531 can partially disrupt these changes and thus alleviate the hyperoxia-induced alveolar epithelial cell injury.
Cell Hypoxia ; Cells, Cultured ; Epithelial Cells ; metabolism ; Humans ; Indoles ; pharmacology ; Maleimides ; pharmacology ; Oxidative Stress ; Protein Kinase C beta ; physiology ; Pulmonary Alveoli ; cytology ; metabolism ; Reactive Oxygen Species ; metabolism ; Shc Signaling Adaptor Proteins ; physiology ; Signal Transduction ; physiology ; Src Homology 2 Domain-Containing, Transforming Protein 1
5.Biomarkers in acute lung injury.
Chinese Journal of Contemporary Pediatrics 2014;16(1):94-98
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is characterized by non-cardiogenic, acute and progressive respiratory failure mediated by a variety of injurious stimuli. ALI can progress to ARDS if an effective management is not taken. The mortality rate remains high due to the complex pathogenesis and ineffective management of ARDS. At present, effective treatment methods for ALI are not available and thus it is important to study the pathogenesis and early diagnosis of ALI. This article reviews some of the biomarkers associated with ALI, with a focus on early diagnosis and future studies.
Acute Lung Injury
;
diagnosis
;
pathology
;
Biomarkers
;
Cytokines
;
physiology
;
Early Diagnosis
;
Endothelial Cells
;
pathology
;
Humans
;
Lung
;
pathology
;
Pulmonary Alveoli
;
pathology
6.Loss of p120 catenin aggravates alveolar edema of ventilation induced lung injury.
Chen-yang DAI ; Guo-feng DAI ; Yu SUN ; Yue-lan WANG
Chinese Medical Journal 2013;126(15):2918-2922
BACKGROUNDp120 catenin (p120ctn) is an adheren junction protein that regulates barrier function, but its role has not been explored in alveolar edema induced by ventilation. We measured stretch-induced cell gap formation in MLE 12 cells due to the loss of p120. We hypothesized that alveolar permeability was increased by high lung inflation associated with alveolar epithelia cell tight junctions being destroyed, which resulted from the loss of p120.
METHODSCultured MLE12 cells were subjected to being stretched or un-stretched (control) and some cells were pretreated with pp2 (c-src inhibitor). After the end of stretching for 0, 1, 2, and 4 hours, the cells were lysed, and p120 expression and c-src activation was determined by Western blotting analysis. In vivo, SD rats were taken to different tidal volumes (Vt 7 ml/kg or 40 ml/kg, PEEP = 0, respiratory rate 30-40 betas/min) for 0, 1, 2, and 4 hour and some were pretreated with pp2, and alveolar edema was calculated.
RESULTSIt was found that p120 expression was reduced and c-src activation increased in a time-dependent and strain-dependent manner due to cyclic-stretch of the alveolar epithelial cells. These changes could be reversed by inhibition of c-src. We obtained similar changes in rats when they were subjected to large tidal volumes and the alveolar edema increased more than in rats in the low Vt group. Pretreated the rats with inhibition of c-src had less pulmonary edema induced by the high tidal volume ventilation.
CONCLUSIONSCyclic stretch MLE 12 cells induced the loss of p120 and may be the same reason by high tidal volume ventilation in rats can aggravate alveolar edema. Maintenance of p120 expression may be a novel therapeutic strategy for the prevention and treatment of ventilation induced lung injury (VILI).
Animals ; Blotting, Western ; Catenins ; physiology ; Cells, Cultured ; Mice ; Pulmonary Alveoli ; pathology ; Pulmonary Edema ; pathology ; Rats ; Rats, Sprague-Dawley ; Tidal Volume ; Ventilator-Induced Lung Injury ; pathology
7.Production and law of variation of the pleural cavity intrinsic pressure and the pressure of alveolar wall during respiratory process.
Journal of Biomedical Engineering 2012;29(2):264-266
All physiologic textbooks deal with pleural cavity pressure, alveolar wall pressure and pressure inside the lung, but they have not stated these ideas clearly. The present study reveals production and Law of variation of the intrinsic pressure of pleural cavity, the pressure of alveolar wall and the intrinsic pressure in the alveoli. Pleural cavity intrinsic pressure is produced by the pressure from pleura expanding or compressing force of the lungs. When the lungs calmly inhale, the thorax expands, pleural cavity negative pressure increase. When the lungs calmly exhale, thorax reduces, but thorax and lungs are still in the extended state, pleural cavity is still in negative pressure. With thorax reducing, negative pressure decreases. When the lungs are at the forced expiration, the lung pleura and wall pleura extrude pleural cavity, only to produce positive pressure. The pressure of alveolar wall is the algebraic sum of the intrinsic pressure of pleural cavity, the intrinsic pressure of pulmonary tissue and the additional pressure of alveolar wall. We did the calculation of additional pressure on the alveolar wall by using Laplace formula of spherical elastic membrane. The intrinsic pressure of alveoli depends on the moving speed or slowness of expansion or compression of alveolar wall and the size of trachea resistance.
Humans
;
Pleural Cavity
;
physiology
;
Pressure
;
Pulmonary Alveoli
;
physiology
;
Respiration
;
Respiratory Mechanics
;
physiology
8.Protective effect of rosiglitazone against hyperoxia-induced lung injury in neonatal rats.
Chinese Journal of Contemporary Pediatrics 2012;14(4):301-305
OBJECTIVETo study the protective effects of PPAR gamma ligand rosiglitazone (RGZ) against hyperoxia-induced lung injury in neonatal rats.
METHODSNinety-six neonatal Sprague-Dawley (SD) rats were randomly divided into three groups: control (room air exposure), hyperoxia (85%-90% oxygen exposure) and RGZ treatment [85%-90% oxygen exposure plus RGZ solution injection (2 mg/kg, once daily)]. Rats were sacrificed at 1, 3, 7 and 14 days after exposure. Hematoxylin and eosin staining was used to evaluate histological changes in lung tissues. The contents of malondialdehyde (MDA) and leucocyte count in bronchoalveolar lavage fluid (BALF) were measured.
RESULTSNo pathological changes were found in the control group at any time point after exposure. Alveolar epithelial cell swelling, interstitial edema and massive infiltration of inflammatory cells were found in the hyperoxia group 3 days after exposure. At 14 days after exposure, the number of pulmonary alveoli was reduced, alveolus interstitium had thickened and organizational structure had become disordered in the hyperoxia group. The RGZ treatment alleviated significantly the hyperoxia induced alterations in lung pathology. Radial alveoli count (RAC) decreased significantly in the hyperoxia group compared with the control group from 3 days through to 14 days after exposure (P<0.05). The RGZ treatment group showed significantly increased RAC compared with the hyperoxia group at 3, 7 and 14 days after exposure (P<0.05). MDA content and leucocyte count in BALF increased significantly in the hyperoxia group 3 days after exposure (P<0.05), reached a peak 7 days after exposure (P<0.01) and remained higher 14 days after exposure (P<0.05) compared with the control group. The RGZ treatment group significantly decreased MDA content and leucocyte count compared with the hyperoxia group (P<0.05).
CONCLUSIONSHyperoxia may cause acute and chronic pulmonary injuries in neonatal rats, characterized by acute inflammatory reactions and decreased alveolus in lungs. RGZ may have protective effects against hyperoxia induced lung injury.
Animals ; Animals, Newborn ; Bronchoalveolar Lavage Fluid ; chemistry ; Female ; Hyperoxia ; complications ; Lung Injury ; prevention & control ; Male ; Malondialdehyde ; analysis ; PPAR gamma ; physiology ; Pulmonary Alveoli ; pathology ; Rats ; Rats, Sprague-Dawley ; Thiazolidinediones ; therapeutic use
9.Alveolar stability under different combinations of positive end-expiratory pressure and tidal volume: alveolar microscopy in isolated injured rat lungs.
Hui LIU ; Claudius A STAHL ; Knut MOELLER ; Matthias SCHNEIDER ; Steven GANZERT ; Zhan-qi ZHAO ; Xiao-wen TONG ; Josef GUTTMANN
Chinese Medical Journal 2010;123(4):406-411
BACKGROUNDHigh positive end-expiratory pressure (PEEP) and low tidal volume (VT) ventilation is thought to be a protective ventilation strategy. It is hypothesized that the stabilization of collapsible alveoli during expiration contributes to lung protection. However, this hypothesis came from analysis of indirect indices like the analysis of the pressure-volume curve of the lung. The purpose of this study was to investigate isolated healthy and injured rat lungs by means of alveolar microscopy, in which combination of PEEP and VT is beneficial with respect to alveolar stability (I-E%).
METHODSAlveolar stability was investigated in isolated, non-perfused mechanically ventilated rat lungs. Injured lungs were compared with normal lungs. For both groups three PEEP settings (5, 10, 20 cmH2O) were combined with three VT settings (6, 10, 15 ml/kg) resulting in nine PEEP-VT combinations per group. Analysis was performed by alveolar microscopy.
RESULTSIn normal lungs alveolar stability persisted in all PEEP-VT combinations (I-E% (3.2 +/- 11.0)%). There was no significant difference using different settings (P > 0.01). In contrast, alveoli in injured lungs were extremely instable at PEEP levels of 5 cmH2O (mean I-E% 100%) and 10 cmH2O (mean I-E% (30.7 +/- 16.8)%); only at a PEEP of 20 cmH2O were alveoli stabilized (mean I-E% of (0.2 +/- 9.3)%).
CONCLUSIONSIn isolated healthy lungs alveolar stability is almost unaffected by different settings of PEEP and VT. In isolated injured lungs only a high PEEP level of 20 cmH2O resulted in stabilized alveoli whereas lower PEEP levels are associated with alveolar instability.
Animals ; Female ; Lung ; pathology ; Lung Injury ; pathology ; Microscopy ; Pulmonary Alveoli ; pathology ; Rats ; Rats, Wistar ; Tidal Volume ; physiology
10.Potential therapeutic application of adult stem cells in acute respiratory distress syndrome.
Chinese Journal of Traumatology 2009;12(4):228-233
Acute respiratory distress syndrome (ARDS) remains a poor prognosis in spite of the recent development of new therapeutic strategies. Cell-based therapy with stem cells has been considered as a promising way for the treatment of vital organ damage. Putative endogenous stem cells have been shown to be located within the adult lung in the basal layer of the upper airways, within or near pulmonary neuroendocrine cell rests, at the bronchoalveolar junction, as well as within the alveolar epithelium. These stem cells are hypothesized to be the source of lung regeneration and repair. But this mechanism seems to be insufficient after lung injury. There is increasing excitement over the last few years with the suggestion that exogenous stem cells may offer new treatment options for ARDS. Exogenous stem cells have the ability to differentiate and function as both airway and lung parenchymal epithelial cells in both in vitro and increasingly in vivo experiments. However, there is great controversy concerning the repair effect of adult stem cells in lung injury. This review evaluates the advances in endogenous respiratory stem cells, and assesses the evidence for the use of stem cells in the repair of lung injury.
Adult Stem Cells
;
physiology
;
transplantation
;
Bone Marrow Transplantation
;
Bronchi
;
cytology
;
Cell Fusion
;
Epithelial Cells
;
physiology
;
Humans
;
Pulmonary Alveoli
;
cytology
;
Respiratory Distress Syndrome, Adult
;
therapy

Result Analysis
Print
Save
E-mail