1.Cucurbitacin B alleviates skin lesions and inflammation in a psoriasis mouse model by inhibiting the cGAS-STING signaling pathway.
Yijian ZHANG ; Xueting WANG ; Yang YANG ; Long ZHAO ; Huiyang TU ; Yiyu ZHANG ; Guoliang HU ; Chong TIAN ; Beibei ZHANG ; Zhaofang BAI ; Bin ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):428-436
Objective To investigate the effects of cucurbitacin B (CucB) on alleviating skin lesions and inflammation in psoriasis mice via the cGAS-STING signaling pathway. Methods The expression of genes associated with the cGAS-STING signaling pathway in psoriatic lesions and non-lesional skin was analyzed, and hallmark gene set enrichment analysis was performed. The cytotoxicity of CucB on BMDMs was evaluated using the CCK-8 assay. The expression levels of genes and proteins related to the cGAS-STING signaling pathway, along with the secretion of inflammatory cytokines, were measured at different concentrations of CucB using quantitative PCR, Western blotting, and ELISA. Imiquimod-induced psoriasis BALB/c mice were divided into four groups: normal group, model group, low-dose CucB group [0.1 mg/ (kg.d)], and high-dose CucB group [0.4 mg/ (kg.d)], with five mice per group. PASI scoring was performed to assess the severity of psoriasis after 6 days of treatment, and HE staining was conducted to observe pathological damage. Meanwhile, the mRNA levels of inflammatory cytokines and their secretion were detected by qPCR and ELISA. Results Most cGAS-STING signaling-related genes were upregulated in lesional skin of psoriasis patients, and the hallmark gene set enrichment analysis revealed that the most significantly upregulated genes were primarily associated with immune response signaling pathways. CucB inhibited dsDNA-induced phosphorylation of interferon regulatory factor 3 (IRF3) and STING proteins in both bone-marrow derived macrophages(BMDMs) and THP-1 cells. CucB also suppressed dsDNA-induced mRNA expression of IFNB1, TNF, IFIT1, CXCL10, ISG15, and reduced the secretion of cytokines such as IFN-β, IL-1β, and TNF-α in THP-1 cells. In the imiquimod-induced psoriasis mouse model, CucB treatment reduced psoriatic symptoms, alleviated skin lesions, and attenuated inflammation. ELISA and qPCR results showed that CucB significantly reduced serum secretion levels of IL-6, TNF-α, and IL-1β, as well as the mRNA levels of IL23A, IL1B, IL6, TNF, and IFNB1. Conclusion CucB inhibits cytoplasmic DNA-induced activationc of the GAS-STING pathway. CucB significantly attenuates skin lesions and inflammation in IMQ-induced psoriatic mice, and the potential molecular mechanism may be related to the down-regulation of the cGAS-STING pathway.
Animals
;
Psoriasis/pathology*
;
Signal Transduction/drug effects*
;
Membrane Proteins/genetics*
;
Mice
;
Nucleotidyltransferases/genetics*
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
Skin/metabolism*
;
Triterpenes/therapeutic use*
;
Humans
;
Cytokines/metabolism*
;
Inflammation/drug therapy*
;
Male
2.TMAO promotes disorders of lipid metabolism in psoriasis.
Rao LI ; Boyan HU ; Manyun MAO ; Wangqing CHEN ; Wu ZHU
Journal of Central South University(Medical Sciences) 2025;50(3):331-343
OBJECTIVES:
Psoriasis is associated with lipid metabolism disorders, but the underlying mechanisms remain unclear. This study aims to investigate the role of trimethylamine N-oxide (TMAO) in lipid metabolism dysregulation in psoriasis.
METHODS:
An imiquimod (IMQ)-induced psoriasis-like mouse model was used to assess lipid metabolism parameters, TMAO levels, and liver flavin monooxygenase 3 (FMO3) mRNA expression. Blood samples from healthy individuals and psoriatic patients were collected to measure serum TMAO levels and lipid profiles. To clarify the role of TMAO in the lipid metabolism disorder of mice with psoriasis model, exogenous TMAO, choline, or 3,3-dimethyl-1-butanol (DMB) were administered via intraperitoneal injections or diet in IMQ-treated mice. Liver tissues from the mouse models were subjected to RNA sequencing to identify TMAO-regulated signaling pathways.
RESULTS:
IMQ-induced psoriatic mice exhibited abnormal glucose, insulin, and lipid levels. IMQ treatment also downregulated the hepatic mRNA expression of glucose transporter 2 (Glut2) and silence information regulator 1 (Sirt1), while upregulating glucose transporter 4 (Glut4) and peroxisome proliferator-activated receptor gamma (PPARγ). Elevated serum TMAO levels were observed in both psoriatic patients and IMQ-treated mice. Additionally, liver FMO3 mRNA expression was increased in the psoriatic mouse model. In patients, TMAO levels positively correlated with Psoriasis Area and Severity Index (PASI) scores, serum triglyceride (TG), and total cholesterol (TC) levels. The intraperitoneal injection of TMAO exacerbated lipid dysregulation in IMQ-treated mice. A choline-rich diet further aggravated lipid abnormalities and liver injury in psoriatic mice, whereas DMB treatment alleviated these effects. RNA-Seq analysis demonstrated that TMAO upregulated hepatic microRNA-122 (miR-122), which may suppress the expression of gremlin 2 (GREM2), thus contributing to lipid metabolism disorder.
CONCLUSIONS
TMAO may promote lipid metabolism dysregulation in psoriasis by modulating the hepatic miR-122/GREM2 pathway.
Animals
;
Methylamines/blood*
;
Mice
;
Psoriasis/chemically induced*
;
Lipid Metabolism/drug effects*
;
Humans
;
Male
;
Liver/metabolism*
;
Female
;
Oxygenases/genetics*
;
Disease Models, Animal
;
Lipid Metabolism Disorders/etiology*
;
Adult
;
Mice, Inbred C57BL
3.Role of acitretin in regulating glucose and lipid homeostasis in an imiquimod-induced psoriasis model mouse.
Kexin LONG ; Wangqing CHEN ; Manyun MAO ; Wu ZHU
Journal of Central South University(Medical Sciences) 2025;50(3):344-357
OBJECTIVES:
Psoriasis is a chronic inflammatory skin disease often accompanied by comorbidities such as hyperglycemia, insulin resistance, and obesity. Acitretin, as a second-generation retinoid, is used in the treatment of psoriasis. This study aims to explore the role of acitretin on glucose and lipid metabolism in psoriasis.
METHODS:
HepG2 cells were treated with acitretin under high- or low-glucose conditions. mRNA and protein expression levels of glucose transport-related genes were evaluated using real-time reverse transcription PCR (real-time RT-PCR) and Western blotting. Glucose uptake was analyzed by flow cytometry, and intracellular lipid droplet formation was assessed via Oil Red O staining. Healthy adult female BALB/C mice were randomly divided into 3 groups: a control group, an imiquimod (IMQ)-induced psoriasis model group (IMQ group), and an acitretin treatment group. Skin lesions and inflammatory markers were examined, along with changes in body weight, plasma glucose/lipid levels, and transcription of metabolic genes. Islets were isolated from normal and psoriasis-induced mice, and the effect of acitretin on insulin secretion was evaluated in vitro.
RESULTS:
Acitretin treatment increased glucose uptake and lipid droplet synthesis of HepG2 in high-glucose environment, with elevated transcription levels of glucose transport-related genes GLUT1 and GLUT4. Transcription of gluconeogenesis-related gene G6pase decreased, while transcription levels of glycogen synthesis-related genes AKT1 and GSY2 increased (all P<0.05), while acitretin inhibits glucose uptake and promotes gluconeogenesis in low-glucose environment. In vivo experiments revealed that compared with the control group, the blood glucose level in the IMQ group was significantly decreased (P<0.05), while acitretin treatment partially restored glucose homeostasis and alleviated weight loss. Ex vivo culture of islets from psoriatic mice revealed that acitretin reduced elevated insulin secretion and downregulated PDX-1 expression, while upregulating glucose homeostasis gene SIRT1 and insulin sensitivity gene PPARγ (all P<0.05). These findings suggest that acitretin plays a critical role in improving islet function and restoring islet homeostasis.
CONCLUSIONS
Acitretin helps maintain the balance between hepatic glycogenesis and gluconeogenesis, enhances insulin sensitivity, and improves pancreatic islet function, thereby promoting systemic and cellular glucose homeostasis.
Acitretin/therapeutic use*
;
Psoriasis/drug therapy*
;
Animals
;
Imiquimod
;
Humans
;
Glucose/metabolism*
;
Homeostasis/drug effects*
;
Mice
;
Lipid Metabolism/drug effects*
;
Mice, Inbred BALB C
;
Female
;
Hep G2 Cells
;
Disease Models, Animal
4.N6-methyladenosine modification and skin diseases.
Ling JIANG ; Yibo HU ; Jing CHEN
Journal of Central South University(Medical Sciences) 2025;50(3):382-395
Currently, research on N6-methyladenine (m6A) is extensive in the field of oncology, while studies involving m6A and skin diseases remain relatively limited. Based on existing reports, we searched PubMed and Web of Science for literature related to m6A and dermatological conditions. Analysis of citation counts and journal impact factors revealed a significant upward trend in the volume of m6A-related research. Term frequency analysis of titles and abstracts indicated that studies mainly focus on skin tumors and inflammatory or immune-related skin diseases, particularly melanoma, psoriasis, and skin development. Transcriptomic data from the Gene Expression Omnibus (GEO) were analyzed, revealing differential expression of m6A-related genes in 4 types of skin tumors (including squamous cell carcinoma and basal cell carcinoma) as well as in inflammatory skin diseases such as psoriasis and atopic dermatitis, and potential mechanisms of action were also explored. Findings suggest that m6A modifications exhibit heterogeneity between neoplastic and non-neoplastic skin diseases. However, the regulatory mechanisms of m6A dynamic modifications on key genes involved in dermatological disorders remain unclear and warrant further investigation.
Humans
;
Skin Neoplasms/metabolism*
;
Skin Diseases/metabolism*
;
Adenosine/genetics*
;
Psoriasis/genetics*
;
Carcinoma, Squamous Cell/genetics*
;
Carcinoma, Basal Cell/genetics*
;
Melanoma/genetics*
5.Quercetin mediates the therapeutic effect of Centella asiatica on psoriasis by regulating STAT3 phosphorylation to inhibit the IL-23/IL-17A axis.
Qing LIU ; Jing LIU ; Yihang ZHENG ; Jin LEI ; Jianhua HUANG ; Siyu LIU ; Fang LIU ; Qunlong PENG ; Yuanfang ZHANG ; Junjie WANG ; Yujuan LI
Journal of Southern Medical University 2025;45(1):90-99
OBJECTIVES:
To explore the active components that mediate the therapeutic effect of Centella asiatica on psoriasis and their therapeutic mechanisms.
METHODS:
TCMSP, TCMIP, PharmMapper, Swiss Target Prediction, GeneCards, OMIM and TTD databases were searched for the compounds in Centella asiatica and their targets and the disease targets of psoriasis. A drug-active component-target network and the protein-protein interaction network were constructed, and DAVID database was used for pathway enrichment analysis. In a RAW264.7 macrophage model of LPS-induced inflammation, the anti-inflammatory effect of 7.5, 15, 30, and 60 μmol/L quercetin, asiaticoside, and asiatic acid, which were identified as the main active components in Centella asiatica, were tested by measuring cellular production of NO, TNF‑α and IL-6 using Griess method and ELISA and by detecting mRNA expressions of IL-23, IL-17A, TNF-α and IL-6 and protein expressions of p-STAT3 (Tyr705) and p-STAT3 (Ser727) with RT-qPCR and Western blotting.
RESULTS:
A total of 139 targets of Centella asiatica and 4604 targets of psoriasis were obtained, and among them CASP3, EGFR, PTGS2, and ESR1 were identified as the core targets. KEGG analysis suggested that quercetin, asiaticoside, and asiatic acid in Centella asiatica were involved in cancer and IL-17 and MAPK signaling pathways. In the RAW264.7 macrophage model of inflammation, treatment with quercetin significantly reduced cellular production of NO, TNF‑α and IL-6, and lowered mRNA expressions of IL-23, IL-17A, TNF‑α and IL-6 and protein expressions of p-STAT3 (Tyr705) and p-STAT3 (Ser727).
CONCLUSIONS
Quercetin, asiaticoside and asiatic acid are the main active components in Centella asiatica to mediate the therapeutic effect against psoriasis, and quercetin in particular is capable of suppressing cellular production of NO, TNF‑α and IL-6 and regulating the IL-23/IL-17A inflammatory axis by mediating STAT3 phosphorylation to inhibit inflammatory response.
Quercetin/pharmacology*
;
Psoriasis/metabolism*
;
STAT3 Transcription Factor/metabolism*
;
Mice
;
Animals
;
Centella/chemistry*
;
Triterpenes/pharmacology*
;
Phosphorylation
;
Interleukin-17/metabolism*
;
Interleukin-23/metabolism*
;
RAW 264.7 Cells
;
Pentacyclic Triterpenes/pharmacology*
;
Macrophages/drug effects*
;
Signal Transduction
;
Plant Extracts
6.Flos Sophorae improves psoriasis in mice by inhibiting the PI3K/AKT pathway.
Lu RAO ; Jiahe DING ; Jiangping WEI ; Yong YANG ; Xiaomei ZHANG ; Jirui WANG
Journal of Southern Medical University 2025;45(9):1989-1996
OBJECTIVES:
To explore the therapeutic mechanism of Flos Sophorae (FS) for treatment of psoriasis.
METHODS:
The active ingredients, targets and psoriasis-related disease targets of FS were obtained from TCMSP, GeneCards, OMIM, DisGeNET and String databases, and Cytoscape 3.8.0 software was used to construct the "FS -active ingredient-key target-signaling pathway-psoriasis" network. GO and KEGG enrichment analyses of the key targets were conducted, and molecular docking was performed using Discovery Studio 2019. In a BALB/c mouse model of imiquimod-induced psoriasis, the effects of vaseline, FS at high, medium and low doses (3.00, 1.50 and 0.75 g/kg, respectively) and a positive drug, given 1 week before and during modeling, were evaluated on body weight changes, spleen coefficient, psoriasis area and severity index (PASI) score and skin pathological changes. Phosphorylation levels of PI3K and AKT proteins were detected using immunohistochemistry and Western blotting.
RESULTS:
A total of 10 active components and 110 key targets were screened. GO and KEGG pathway enrichment analysis suggested that FS improved psoriasis primarily through the PI3K/AKT, TNF, and IL-17 signaling pathways. Molecular docking showed that both quercetin and kaempferol could spontaneously bind to AKT1, TNF and other sites. In the mouse model of psoriasis, treatment with low-dose FS significantly improved epidermal thickening, increased body weight, lowered PASI score, and reduced phosphorylation levels of PI3K and AKT proteins.
CONCLUSIONS
The therapeutic mechanism of FS for psoriasis involves multiple components, targets, and pathways that mediate the inhibition of the phosphorylation levels of PI3K and AKT proteins to suppress the activation of the PI3K/AKT signaling pathway.
Animals
;
Psoriasis/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Mice
;
Signal Transduction/drug effects*
;
Mice, Inbred BALB C
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Molecular Docking Simulation
;
Disease Models, Animal
;
Drugs, Chinese Herbal/therapeutic use*
;
Imiquimod
;
Phosphorylation
7.ALKBH5 exacerbates psoriatic dermatitis in mice by promoting angiogenesis.
Chengfang ZHANG ; Fei LI ; Bao CHAI ; Jian JIANG ; Yinlian ZHANG ; Xuemei LI ; Jingyu ZHANG ; Yuqiong HUANG ; Zilin JIN ; Yixuan Wang WAN ; Suwen LIU ; Nan YU ; Hongxiang CHEN
Frontiers of Medicine 2025;19(4):653-664
Psoriasis is a chronic inflammatory skin disease, and its pathogenesis is largely modulated by abnormal angiogenesis. Previous research has indicated that AlkB homolog 5 (ALKBH5), an important demethylase affecting N6-methyladenosine (m6A) modification, plays a role in regulating angiogenesis in cardiovascular and eye diseases. Our present study found that ALKBH5 was upregulated and co-localized with cluster of differentiation 31 (CD31) in the skin of IMQ group compared with control group. ALKBH5-deficient mice decreased IMQ-induced psoriatic dermatitis and exhibited histological improvements, including decreased epidermal thickness, hyperkeratosis, numbers of dermal capillary vessels and inflammatory cell infiltration. ALKBH5-KO mice alleviated angiogenesis in psoriatic lesions by downregulating the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. Additionally, the expression of ALKBH5 was significantly upregulated in IL-17A-induced human umbilical vein endothelial cells (HUVECs), which further promoted the expression of angiogenesis-related cytokines and endothelial cell proliferation. Cell proliferation and angiogenesis were suppressed in ALKBH5 knockdown group, whereas ALKBH5 overexpression promoted these processes. The regulation of angiogenesis in HUVECs by ALKBH5 was facilitated through the AKT-mTOR pathway. Collectively, ALKBH5 plays a pivotal role in psoriatic dermatitis and angiogenesis, which may offer a new potential targets for treating psoriasis.
Animals
;
Psoriasis/chemically induced*
;
Mice
;
Humans
;
Neovascularization, Pathologic/genetics*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
AlkB Homolog 5, RNA Demethylase/genetics*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Cell Proliferation
;
Mice, Knockout
;
Disease Models, Animal
;
Signal Transduction
;
Male
;
Skin/blood supply*
;
Mice, Inbred C57BL
;
Angiogenesis
8.Mechanosensory activation of Piezo1 via cupping therapy: Harnessing neural networks to modulate AMPK pathway for metabolic restoration in a mouse model of psoriasis.
Ruo-Fan XI ; Xin LIU ; Yi WANG ; Han-Zhi LU ; Shao-Jie YUAN ; Dong-Jie GUO ; Jian-Yong ZHU ; Fu-Lun LI ; Yan-Juan DUAN
Journal of Integrative Medicine 2025;23(6):721-732
OBJECTIVE:
Psoriasis, a common chronic inflammatory skin condition with genetic underpinnings, is traditionally managed with cupping therapy. Although used historically, the precise mechanical effects and therapeutic mechanisms of cupping in psoriasis remain largely unexamined. This study aimed to evaluate cupping therapy's efficacy for psoriasis and investigate its role in modulating inflammatory responses and cellular metabolism.
METHODS:
Psoriasis was induced in mice using topical imiquimod (IMQ). The effects of cupping on psoriatic lesions were assessed using the Psoriasis Area and Severity Index score, histology, immunohistochemistry, and immunofluorescence staining. polymerase chain reaction sequencing (RNA-seq) and Western blotting were conducted to examine changes in mRNA expression and the AMP-activated protein kinase (AMPK) signaling pathway.
RESULTS:
Cupping therapy significantly reduced inflammation, epidermal thickness, and inflammatory cell infiltration in mice with IMQ-induced psoriasis. Immunohistochemistry and immunofluorescence showed lower expression of inflammatory markers and a shift in T-cell populations. RNA-seq and Western blotting indicated that cupping upregulated Piezo1 and activated the AMPK pathway, improving energy metabolism in psoriatic skin.
CONCLUSION
Cupping therapy reduces epidermal hyperproliferation and inflammation in psoriasis, rebalancing the local immune microenvironment. Mechanistically, cupping promotes calcium influx via Piezo1, activates AMPK signaling, and supports metabolic homeostasis, suggesting therapeutic potential for psoriasis. Please cite this article as: Xi RF, Liu X, Wang Y, Lu HZ, Yuan SJ, Guo DJ, Zhu JY, Li FL, Duan YJ. Mechanosensory activation of Piezo1 via cupping therapy: Harnessing neural networks to modulate AMPK pathway for metabolic restoration in a mouse model of psoriasis. J Integr Med. 2025; 23(6):721-732.
Animals
;
Psoriasis/chemically induced*
;
Mice
;
AMP-Activated Protein Kinases/metabolism*
;
Disease Models, Animal
;
Cupping Therapy/methods*
;
Signal Transduction
;
Imiquimod
;
Ion Channels/genetics*
;
Male
;
Mechanotransduction, Cellular
9.Inflammatory and Immunomodulatory Effects of Tripterygium wilfordii Multiglycoside in Mouse Models of Psoriasis Keratinocytes.
Shuo ZHANG ; Hong-Jin LI ; Chun-Mei YANG ; Liu LIU ; Xiao-Ying SUN ; Jiao WANG ; Si-Ting CHEN ; Yi LU ; Man-Qi HU ; Ge YAN ; Ya-Qiong ZHOU ; Xiao MIAO ; Xin LI ; Bin LI
Chinese journal of integrative medicine 2024;30(3):222-229
OBJECTIVE:
To determine the role of Tripterygium wilfordii multiglycoside (TGW) in the treatment of psoriatic dermatitis from a cellular immunological perspective.
METHODS:
Mouse models of psoriatic dermatitis were established by imiquimod (IMQ). Twelve male BALB/c mice were assigned to IMQ or IMQ+TGW groups according to a random number table. Histopathological changes in vivo were assessed by hematoxylin and eosin staining. Ratios of immune cells and cytokines in mice, as well as PAM212 cell proliferation in vitro were assessed by flow cytometry. Pro-inflammatory cytokine expression was determined using reverse transcription quantitative polymerase chain reaction.
RESULTS:
TGW significantly ameliorated the severity of IMQ-induced psoriasis-like mouse skin lesions and restrained the activation of CD45+ cells, neutrophils and T lymphocytes (all P<0.01). Moreover, TGW significantly attenuated keratinocytes (KCs) proliferation and downregulated the mRNA levels of inflammatory cytokines including interleukin (IL)-17A, IL-23, tumor necrosis factor α, and chemokine (C-X-C motif) ligand 1 (P<0.01 or P<0.05). Furthermore, it reduced the number of γ δ T17 cells in skin lesion of mice and draining lymph nodes (P<0.01).
CONCLUSIONS
TGW improved psoriasis-like inflammation by inhibiting KCs proliferation, as well as the associated immune cells and cytokine expression. It inhibited IL-17 secretion from γ δ T cells, which improved the immune-inflammatory microenvironment of psoriasis.
Male
;
Animals
;
Mice
;
Tripterygium
;
Psoriasis/drug therapy*
;
Keratinocytes
;
Skin Diseases/metabolism*
;
Cytokines/metabolism*
;
Imiquimod/metabolism*
;
Dermatitis/pathology*
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
Skin/metabolism*
10.Research progress of metabolomics in psoriasis.
Chinese Medical Journal 2023;136(15):1805-1816
Psoriasis is a chronic inflammatory skin disease with significant physical and psychological burdens. The interplay between the innate and adaptive immune systems is thought to contribute to the pathogenesis; however, the details of the pathogenesis remain unclear. In addition, reliable biomarkers for diagnosis, assessment of disease activity, and monitoring of therapeutic response are limited. Metabolomics is an emerging science that can be used to identify and analyze low molecular weight molecules in biological systems. During the past decade, metabolomics has been widely used in psoriasis research, and substantial progress has been made. This review summarizes and discusses studies that applied metabolomics to psoriatic disease. These studies have identified dysregulation of amino acids, carnitines, fatty acids, lipids, and carbohydrates in psoriasis. The results from these studies have advanced our understanding of: (1) the molecular mechanisms of psoriasis pathogenesis; (2) diagnosis of psoriasis and assessment of disease activity; (3) the mechanism of treatment and how to monitor treatment response; and (4) the link between psoriasis and comorbid diseases. We discuss common research strategies and progress in the application of metabolomics to psoriasis, as well as emerging trends and future directions.
Humans
;
Psoriasis/drug therapy*
;
Skin/metabolism*
;
Biomarkers/metabolism*
;
Metabolomics/methods*

Result Analysis
Print
Save
E-mail