1.Role of silent mutations in KRAS -mutant tumors.
Jun LU ; Chao ZHOU ; Feng PAN ; Hongyu LIU ; Haohua JIANG ; Hua ZHONG ; Baohui HAN
Chinese Medical Journal 2025;138(3):278-288
Silent mutations within the RAS gene have garnered increasing attention for their potential roles in tumorigenesis and therapeutic strategies. Kirsten-RAS ( KRAS ) mutations, predominantly oncogenic, are pivotal drivers in various cancers. While extensive research has elucidated the molecular mechanisms and biological consequences of active KRAS mutations, the functional significance of silent mutations remains relatively understudied. This review synthesizes current knowledge on KRAS silent mutations, highlighting their impact on cancer development. Silent mutations, which do not alter protein sequences but can affect RNA stability and translational efficiency, pose intriguing questions regarding their contribution to tumor biology. Understanding these mutations is crucial for comprehensively unraveling KRAS -driven oncogenesis and exploring novel therapeutic avenues. Moreover, investigations into the clinical implications of silent mutations in KRAS -mutant tumors suggest potential diagnostic and therapeutic strategies. Despite being in early stages, research on KRAS silent mutations holds promise for uncovering novel insights that could inform personalized cancer treatments. In conclusion, this review underscores the evolving landscape of KRAS silent mutations, advocating for further exploration to bridge fundamental biology with clinical applications in oncology.
Humans
;
Mutation/genetics*
;
Neoplasms/genetics*
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
Animals
2.Novel paradigms in KRAS targeting: Unveiling strategies to combat drug resistance.
Xiyuan LUO ; Feihan ZHOU ; Yuemeng TANG ; Xiaohong LIU ; Ruilin XIAO ; Minzhi GU ; Jialu BAI ; Decheng JIANG ; Gang YANG ; Lei YOU ; Yupei ZHAO
Chinese Medical Journal 2025;138(18):2243-2267
The Kirsten rat sarcoma viral oncogene homolog ( KRAS ) mutation is one of the most prevalent activating alterations in cancer. It indicates a poor overall prognosis due to its highly invasive nature. Although several KRAS inhibitors have been developed in recent years, a significant clinical challenge has emerged as a substantial proportion of patients eventually develop resistance to these therapies. Therefore, identifying determinants of drug resistance is critical for guiding treatment strategies. This review provides a comprehensive overview of the mutation landscape and molecular mechanisms of KRAS activity in various cancers. Meanwhile, it summaries the progress and prospects of small molecule KRAS inhibitors undergoing clinical trials. Furthemore, this review explores potential strategies to overcome drug resistance, with the ultimate goal of steering toward patient-centric precision oncology in the foreseeable future.
Humans
;
Drug Resistance, Neoplasm/drug effects*
;
Proto-Oncogene Proteins p21(ras)/metabolism*
;
Mutation/genetics*
;
Neoplasms/genetics*
;
Antineoplastic Agents/therapeutic use*
3.Genetic and clinical characteristics of children with RAS-mutated juvenile myelomonocytic leukemia.
Yun-Long CHEN ; Xing-Chen WANG ; Chen-Meng LIU ; Tian-Yuan HU ; Jing-Liao ZHANG ; Fang LIU ; Li ZHANG ; Xiao-Juan CHEN ; Ye GUO ; Yao ZOU ; Yu-Mei CHEN ; Ying-Chi ZHANG ; Xiao-Fan ZHU ; Wen-Yu YANG
Chinese Journal of Contemporary Pediatrics 2025;27(5):548-554
OBJECTIVES:
To investigate the genomic characteristics and prognostic factors of juvenile myelomonocytic leukemia (JMML) with RAS mutations.
METHODS:
A retrospective analysis was conducted on the clinical data of JMML children with RAS mutations treated at the Hematology Hospital of Chinese Academy of Medical Sciences, from January 2008 to November 2022.
RESULTS:
A total of 34 children were included, with 17 cases (50%) having isolated NRAS mutations, 9 cases (27%) having isolated KRAS mutations, and 8 cases (24%) having compound mutations. Compared to children with isolated NRAS mutations, those with NRAS compound mutations showed statistically significant differences in age at onset, platelet count, and fetal hemoglobin proportion (P<0.05). Cox proportional hazards regression model analysis revealed that hematopoietic stem cell transplantation (HSCT) and hepatomegaly (≥2 cm below the costal margin) were factors affecting the survival rate of JMML children with RAS mutations (P<0.05); hepatomegaly was a factor affecting survival in the non-HSCT group (P<0.05).
CONCLUSIONS
Children with NRAS compound mutations have a later onset age compared to those with isolated NRAS mutations. At initial diagnosis, children with NRAS compound mutations have poorer peripheral platelet and fetal hemoglobin levels than those with isolated NRAS mutations. Liver size at initial diagnosis is related to the prognosis of JMML children with RAS mutations. HSCT can improve the prognosis of JMML children with RAS mutations.
Humans
;
Leukemia, Myelomonocytic, Juvenile/therapy*
;
Mutation
;
Male
;
Female
;
Child, Preschool
;
Retrospective Studies
;
Child
;
Infant
;
GTP Phosphohydrolases/genetics*
;
Membrane Proteins/genetics*
;
Adolescent
;
Hematopoietic Stem Cell Transplantation
;
Proportional Hazards Models
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
Prognosis
4.Progress in diagnosis and treatment of RAS-related autoimmune lymphoproliferative disorder.
Jia-Ning REN ; Yang WAN ; Xiao-Fan ZHU
Chinese Journal of Contemporary Pediatrics 2025;27(9):1149-1155
RAS-associated autoimmune lymphoproliferative disorder (RALD) is a rare congenital immunodeficiency disorder caused by somatic mutations in NRAS or KRAS. Its main pathological feature is immune dysregulation-induced hematologic destruction, presenting with symptoms resembling autoimmune diseases. RALD exhibits significant clinical heterogeneity, with manifestations including autoimmune phenomena, hepatosplenomegaly, lymphadenopathy, monocytosis, and increased susceptibility to infections. Owing to its rarity and its unclear nature, a standardized therapeutic regimen for RALD is currently lacking. This review summarizes the latest advances in the pathogenesis, clinical manifestations, differential diagnosis, and treatment of RALD, aiming to provide new insights and reference for the understanding and management of this disorder.
Humans
;
Lymphoproliferative Disorders/etiology*
;
Autoimmune Diseases/etiology*
;
Autoimmune Lymphoproliferative Syndrome/genetics*
;
GTP Phosphohydrolases/genetics*
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
Mutation
;
Membrane Proteins
5.Relationships between Molecular Genetics and Clinical Features of Children with Acute Myeloid Leukemia.
Fei LONG ; Hao XIONG ; Li YANG ; Ming SUN ; Zhi CHEN ; Wen-Jie LU ; Shan-Shan QI ; Fang TAO ; Lin-Lin LUO ; Jing-Pei CHEN
Journal of Experimental Hematology 2025;33(1):69-74
OBJECTIVE:
To analyze the molecular genetic spectrum of children with acute myeloid leukemia (AML), and explore its correlation with clinical characteristics and prognosis.
METHODS:
The clinical and molecular genetic data of 116 children with newly diagnosed AML in Wuhan Children's Hospital from September 2015 to August 2022 were retrospectively analyzed. The Fisher's exact test was used to analyze the correlation of gene mutations with clinical features, and Kaplan-Meier curve was used to analyze the influences of gene mutations on the prognosis.
RESULTS:
NRAS (22%), KRAS (14.9%), and KIT (14.7%) mutations were the most common genetic abnormalities in 116 children with AML. Children with KIT, CEBPA and GATA2 mutations showed a higher median onset-age than those without mutations (all P < 0.05). Children with FLT3-ITD mutation exhibited a higher white blood cell count at initial diagnosis compared to those without mutations (P < 0.05). Children with ASXL2 mutation had lower platelet count and hemoglobin at initial diagnosis than those without mutations (both P < 0.05). KIT mutations were often co-occurred with t(8;21)(q22;q22). There was no significant relationship between gene mutation and minimal residual disease (MRD) remission rate after the first and second induction therapy (P >0.05). KIT and NRAS mutations were not associated with prognosis significantly (P >0.05). The overall survival (OS) rates of children with CEBPA and FLT3-ITD mutations were superior to those without mutations, but the differences were not statistically significant (P >0.05). The 3-year OS rate of 61 children treated by allogeneic hematopoietic stem cell transplantation was 89.8%, which was significantly higher than 55.2% of those only treated by chemotherapy (P < 0.001).
CONCLUSIONS
Gene mutations are common in children with AML, and next-generation sequencing can significantly improve the detection rate of gene mutations, which can guide the risk stratification therapy. In addition, FLT3-ITD and KIT mutations may no longer be poor prognostic factors.
Humans
;
Leukemia, Myeloid, Acute/genetics*
;
Mutation
;
Prognosis
;
Retrospective Studies
;
fms-Like Tyrosine Kinase 3/genetics*
;
Child
;
Proto-Oncogene Proteins c-kit/genetics*
;
Male
;
Female
;
CCAAT-Enhancer-Binding Proteins/genetics*
;
Membrane Proteins/genetics*
;
Child, Preschool
;
Adolescent
;
GATA2 Transcription Factor/genetics*
;
GTP Phosphohydrolases/genetics*
;
Proto-Oncogene Proteins p21(ras)/genetics*
6.Clinical Characteristics and Prognostic Analysis of Newly Diagnosed Acute Myeloid Leukemia Patients with NRAS and KRAS Gene Mutations.
Zhang-Yu YU ; Bo CAI ; Yi WANG ; Yang-Yang LEI ; Bing-Xia LI ; Yu-Fang LI ; Yan-Ping SHI ; Jia-Xin CHEN ; Shu-Hong LIU ; Chang-Lin YU ; Mei GUO
Journal of Experimental Hematology 2025;33(3):682-690
OBJECTIVE:
To retrospectively analyze the clinical characteristics, co-mutated genes in newly diagnosed acute myeloid leukemia (AML) patients with NRAS and KRAS gene mutations, and the impact of NRAS and KRAS mutations on prognosis.
METHODS:
The clinical data and next-generation sequencing results of 80 newly diagnosed AML patients treated at our hospital from December 2018 to December 2023 were collected. The clinical characteristics, co-mutated genes of NRAS and KRAS , and the impact of NRAS and KRAS mutations on prognosis in newly diagnosed AML patients were analyzed.
RESULTS:
Among 80 newly diagnosed AML patients, NRAS mutations were detected in 20 cases(25.0%), and KRAS mutations were detected in 9 cases(11.3%). NRAS mutations predominantly occurred at codons 12 and 13 of exon 2, as well as codon 61 of exon 3, while KRAS mutations were most commonly occurred at codons 12 and 13 of exon 2, all of which were missense mutations. There were no statistically significant differences observed in terms of age, sex, white blood cell count(WBC), hemoglobin(Hb), platelet count(PLT), bone marrow blasts, first induction chemotherapy regimen, CR1/CRi1 rates, chromosome karyotype, 2022 ELN risk classification and allogeneic hematopoietic stem cell transplantation(allo-HSCT) among the NRAS mutation group, KRAS mutation group and NRAS/KRAS wild-type group (P >0.05). KRAS mutations were significantly correlated with PTPN11 mutations (r =0.344), whereas no genes significantly associated with NRAS mutations were found. Survival analysis showed that compared to the NRAS/KRAS wild-type group, patients with NRAS mutation had a relatively higher 5-year overall survival (OS) rate and relapse-free survival (RFS) rate, though the differences were not statistically significant (P =0.097, P =0.249). Compared to the NRAS/KRAS wild-type group, patients with KRAS mutation had a lower 5-year OS rate and RFS rate, with no significant differences observed (P =0.275, P =0.442). There was no significant difference in the 5-year RFS rate between the KRAS mutation group and NRAS mutation group (P =0.157), but the 5-year OS rate of patients with KRAS mutation was significantly lower than that of patients with NRAS mutation (P =0.037).
CONCLUSION
In newly diagnosed AML patients, KRAS mutation was significantly correlated with PTPN11 mutation. Compared to patients with NRAS/KRAS wild-type, those with NRAS mutation showed a more favorable prognosis, while patients with KRAS mutation showed a poorer prognosis; however, these differences did not reach statistical significance. Notably, the prognosis of AML patients with KRAS mutation was significantly inferior compared to those with NRAS mutation.
Humans
;
Leukemia, Myeloid, Acute/diagnosis*
;
Mutation
;
Prognosis
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
GTP Phosphohydrolases/genetics*
;
Retrospective Studies
;
Membrane Proteins/genetics*
;
Female
;
Male
;
Middle Aged
;
Adult
;
Aged
7.Advances in Immunotherapy of KRAS-mutated Non-small Cell Lung Cancer.
Xinyue YANG ; Zhiwei TANG ; Li MA ; Ran CHEN
Chinese Journal of Lung Cancer 2025;28(5):343-352
In epidemiological statistics, the incidence rate and mortality rate of malignant lung tumors rank among the top. Non-small cell lung cancer (NSCLC) constitutes an important part of lung cancer and has become a key focus of clinical research and treatment. Among the genomic characteristics of NSCLC, the Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation is one of the main tumor drivers, accounting for approximately 25% of all NSCLC cases. The existence of this mutation is closely related to the treatment response and prognosis of patients. Therefore, the treatment strategy for KRAS-mutated NSCLC is an important topic in the field of tumor research. In the current era, immunomodulatory therapy has rapidly gained popularity and developed rapidly in oncology due to its unique mechanism of action and remarkable clinical efficacy. The treatment strategies targeting the KRAS-mutated of NSCLC have gradually become a research hotspot. The advent of immune checkpoint inhibitors (ICIs) has opened up a new therapeutic avenue for patients with such cancers, and clinical studies have shown significant effects in improving survival rates. Nevertheless, there are still many challenges in the application of immunotherapy, such as the complexity of the tumor microenvironment, individual differences among patients, and drug resistance mechanisms. This article reviews the progress of immunotherapy for KRAS-mutated NSCLC, focusing on the specific application of immunotherapy, the exploration of combination therapies, and the results of related clinical trials. At the same time, it discusses the possible future development directions of KRAS-mutated NSCLC treatment, providing a reference for clinical treatment practice.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/immunology*
;
Lung Neoplasms/immunology*
;
Proto-Oncogene Proteins p21(ras)/immunology*
;
Immunotherapy/methods*
;
Mutation
;
Animals
8.Advances in Diagnosis and Targeted Therapy of KRASG12C Mutant Non-small Cell Lung Cancer.
Jiahe SHI ; Yufang WANG ; Jing ZHENG ; Jianya ZHOU
Chinese Journal of Lung Cancer 2025;28(8):597-611
Lung cancer stands as the primary cause of cancer-related mortalities globally, presenting a severe menace to human health. In individuals with non-small cell lung cancer (NSCLC), Kirsten rat sarcoma viral oncogene (KRAS) mutations serve as crucial oncogenic drivers. NSCLC with KRASG12C mutation is among the most prevalent subtypes. Currently, the detection methods for KRAS mutations predominantly concentrate on polymerase chain reaction (PCR) and sequencing platforms. The diverse derivative technologies of these two platforms each exhibit distinct merits and demerits in terms of testing performance and detection throughput, and find significant applications in tissue biopsy and liquid biopsy. In targeted therapies, KRASG12C targeted drugs, including Sotorasib, Adagrasib, Fulzerasib, Garsorasib, and Glecirasib, have demonstrated certain therapeutic efficacies in clinical trials and have obtained marketing approval. To tackle drug resistance and enhance patient's prognoses, combination therapeutic strategies that integrate targeted agents with chemotherapy, immune checkpoint inhibitors, Src homology region 2 domain-containing phosphatase 2 (SHP2) inhibitors, and epidermal growth factor receptor (EGFR) monoclonal antibodies have emerged. This paper systematically reviews the advancements in the diagnosis and targeted therapy of NSCLC with KRASG12C mutation, aiming to offer a reference for the selection of clinical treatment regimens and subsequent research.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/drug therapy*
;
Lung Neoplasms/drug therapy*
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
Mutation
;
Molecular Targeted Therapy
9.Radiogenomics-based prediction of KRAS and EGFR gene mutation in non-small cell lung cancer patients.
Jianing LIN ; Zhihang YAN ; Longyu HE ; Hao ZHANG ; Mingxuan XIE
Journal of Central South University(Medical Sciences) 2025;50(5):805-814
OBJECTIVES:
Non-small cell lung cancer (NSCLC) is associated with poor prognosis, with 30% of patients diagnosed at an advanced stage. Mutations in the EGFR and KRAS genes are important prognostic factors for NSCLC, and targeted therapies can significantly improve survival in these patients. Although tissue biopsy remains the gold standard for detecting gene mutations, it has limitations, including invasiveness, sampling errors due to tumor heterogeneity, and poor reproducibility. This study aims to develop machine learning models based on radiomic features to predict EGFR and KRAS gene mutation status in NSCLC patients, thereby providing a reference for precision oncology.
METHODS:
Imaging and mutation data from eligible NSCLC patients were obtained from the publicly available Lung-PET-CT-Dx dataset in The Cancer Imaging Archive (TCIA). A three-dimensional-convolutional neural network (3D-CNN) was used to extract imaging features from the regions of interest (ROI). The LightGBM algorithm was employed to build classification models for predicting EGFR and KRAS gene mutation status. Model performance was evaluated using 5-fold cross-validation, with receiver operator characteristic (ROC) curves, area under the curve (AUC), accuracy, sensitivity, and specificity used for validation.
RESULTS:
The models effectively predicted EGFR and KRAS mutations in NSCLC patients, achieving an AUC of 0.95 for EGFR mutations and 0.90 for KRAS. The models also demonstrated high accuracy (EGFR 89.66%; KRAS 87.10%), sensitivity (EGFR 93.33%; KRAS 87.50%), and specificity (EGFR 85.71%; KRAS 86.67%).
CONCLUSIONS
A radiogenomics-machine learning predictive model can serve as a non-invasive tool for anticipating EGFR and KRAS gene mutation status in NSCLC patients.
Humans
;
Carcinoma, Non-Small-Cell Lung/diagnostic imaging*
;
Lung Neoplasms/diagnostic imaging*
;
Mutation
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
ErbB Receptors/genetics*
;
Machine Learning
;
Positron Emission Tomography Computed Tomography
;
Female
;
Male
;
Neural Networks, Computer
;
Middle Aged
;
Aged
10.Schistosoma infection, KRAS mutation status, and prognosis of colorectal cancer.
Xinyi LI ; Hongli LIU ; Bo HUANG ; Ming YANG ; Jun FAN ; Jiwei ZHANG ; Mixia WENG ; Zhecheng YAN ; Li LIU ; Kailin CAI ; Xiu NIE ; Xiaona CHANG
Chinese Medical Journal 2024;137(2):235-237

Result Analysis
Print
Save
E-mail