1.Therapeutic effect of concentrated growth factors combined with self-curing calcium phosphate cement on periodontal intrabony defects: Clinical and radiographic evaluation.
Xinying WANG ; Xueyuan CHENG ; Yong ZHANG ; Fei LI ; Jinyu DUAN ; Jing QIAO
Journal of Peking University(Health Sciences) 2025;57(1):42-50
OBJECTIVE:
To clarify the role of concentrated growth factors (CGF) in the treatment of periodontal cement defects using calcium phosphate cement (CPC) with self-curing properties.
METHODS:
Thirty-six intrabony defects were randomly divided into two groups. The experimental group received CGF+CPC treatment (n=18), while the control group received CPC treatment alone (n=18). The probing depth, clinical attachment loss, and hard tissue filling as measured by cone beam CT (CBCT) were evaluated at baseline and 1 year postoperatively in both groups, and the levels of major growth factors in CGF and serum were compared [platelet-derived growth factor-BB (PDGF-BB), transforming growth factor-β1 (TGF-β1), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF)].
RESULTS:
At baseline, there were no statistically significant differences in probing depth, clinical attachment loss and CBCT measurements between the two groups (P>0.05). At 1 year postoperatively, significant improvements were observed in parameters mentioned above in both groups (P < 0.05). The CGF+CPC group seemed more effective compared with the CPC group in reduction of probing depth [(4.5±1.3) mm vs. (3.2±1.1) mm] and clinical attachment gain [(3.8±0.9) mm vs. (2.0±0.5) mm, P < 0.05]. Compared with the group treated with CPC alone, the hard tissue filling degree shown by CBCT in the CGF+CPC group was significantly increased [the reduction of the depth of the intrabony defects was (3.9±1.2) mm vs. (2.1±0.7) mm, respectively, P < 0.01]. At 1 year post-operatively, the volume of the intrabony defects shown by CBCT in the CGF+CPC group was reduced by (0.031 8±0.004 1) mL, which was significantly more than that in the CPC group [(0.019 7±0.001 2) mL, P < 0.05]. In addition, the concentration of the main growth factors (PDGF-BB, TGF-β1, IGF-1, and VEGF) in CGF were higher than those in serum (P < 0.001).
CONCLUSION
After 1 year of follow-up, the results of the present study indicated that CGF could significantly improve the clinical and radiological effects of CPC on the treatment of periodontal intrabony defects.
Humans
;
Calcium Phosphates/therapeutic use*
;
Male
;
Female
;
Bone Cements/therapeutic use*
;
Middle Aged
;
Cone-Beam Computed Tomography
;
Alveolar Bone Loss/therapy*
;
Becaplermin
;
Adult
;
Insulin-Like Growth Factor I
;
Intercellular Signaling Peptides and Proteins/therapeutic use*
;
Proto-Oncogene Proteins c-sis/blood*
;
Transforming Growth Factor beta1/blood*
;
Vascular Endothelial Growth Factor A/blood*
2.Cryptic COL1A1-PDGFB fusion in dermatofibrosarcoma protuberans: a clinicopathological and genetic analysis.
Min CHEN ; Yu Mei CHEN ; Yang LU ; Xin HE ; Heng PENG ; Hong Ying ZHANG
Chinese Journal of Pathology 2023;52(1):13-18
Objective: To investigate the clinicopathological and cytogenetic features of cryptic COL1A1-PDGFB fusion dermatofibrosarcoma protuberans (CC-DFSP). Methods: Three cases of CC-DFSP diagnosed in West China Hospital, Sichuan University, Chengdu, China from January 2021 to September 2021 were studied. Immunohistochemistry for CD34 and other markers, fluorescence in situ hybridization (FISH) for PDGFB, COL1A1-PDGFB and COL1A1, next-generation sequencing (NGS), reverse-transcriptase polymerase chain reaction (RT-PCR) and Sanger sequencing were performed. Results: There were three cases of CC-DFSP, including two females and one male. The patients were 29, 44 and 32 years old, respectively. The sites were abdominal wall, caruncle and scapula. Microscopically, they were poorly circumscribed. The spindle cells of the tumors infiltrated into the whole dermis or subcutaneous tissues, typically arranging in a storiform pattern. Immunohistochemically, the neoplastic cells exhibited diffuse CD34 expression, but were negative for S-100, SMA, and Myogenin. Loss of H3K27me3 was not observed in the tumor cells. The Ki-67 index was 10%-15%. The 3 cases were all negative for PDGFB rearrangement and COL1A1-PDGFB fusion, whereas showing unbalanced rearrangement for COL1A1. Case 1 showed a COL1A1 (exon 31)-PDGFB (exon 2) fusion using NGS, which was further validated through RT-PCR and Sanger sequencing. All patients underwent extended surgical resection. Except for case 3 with recurrence 2 years after surgical resection, the other 2 cases showed no recurrence or metastasis during the follow-up. Conclusions: FISH has shown its validity for detecting PDGFB rearrangement and COL1A1-PDGFB fusion and widely applied in clinical detection. However, for cases with negative routine FISH screening that were highly suspicious for DFSPs, supplementary NGS or at least COL1A1 break-apart FISH screening could be helpful to identify cryptic COL1A1-PDGFB fusions or other variant fusions.
Female
;
Humans
;
Male
;
Collagen Type I, alpha 1 Chain
;
Dermatofibrosarcoma/pathology*
;
In Situ Hybridization, Fluorescence
;
Oncogene Proteins, Fusion/genetics*
;
Proto-Oncogene Proteins c-sis/genetics*
;
Skin Neoplasms/pathology*
;
Adult
3.Kiwi fruit essence reduces radiation-induced lung injury by down-regulating TNF-α and PDGF-B in rats.
Lijing LIU ; Hong QIAN ; Liyang HE ; Wenjie WEI ; Meiling ZHOU ; Jianbin HE
Chinese Journal of Cellular and Molecular Immunology 2023;39(4):332-338
Objective To observe the role of tumor necrosis factor-α (TNF-α) and platelet-derived growth factor-B (PDGF-B) in kiwi fruit essence-mediated protection of radiation-induced lung injury (RILI) in rats. Methods 96 male healthy Sprague-Dawley rats were divided into normal control group, model group, and kiwi fruit essence treatment group(60 and 240 mg/kg) by the random number table method, with 24 animals in each group. The whole lungs underwent 6 MV X-ray irradiation (18 Gy) to induce RILI animal models in rats of the latter three groups. On the next day after irradiation, rats in the latter two groups were intragastrically administrated with 60 or 240 mg/kg kiwi fruit essence, once a day. The rats in the normal control and model groups were treated with 9 g/L sodium chloride solution. Eight rats in the latter three groups were randomly sacrificed on days 14, 28, and 56, while normal control rats were sacrificed on day 56 as the overall control. Blood samples were collected and separated. Serum concentrations of TNF-α and PDGF-B were detected using ELISA. The lung tissues were isolated for HE and Masson staining to evaluate alveolitis and pulmonary fibrosis (PF). The hydroxyproline (HYP) content in lung tissues was detected. The mRNA and protein expression of pulmonary TNF-α and PDGF-B were determined by quantitative real-time PCR and immunohistochemistry. Results Compared with the model group, treatment with 60 and 240 mg/kg kiwi fruit essence group significantly reduced alveolitis on days 14 and 28 as well as PF lesions on days 28 and 56. Compared with the normal control group, HYP content in the lung tissue of the model group increased on day 28 and day 56, while TNF-α and PDGF-B levels in the serum and lung tissues increased at each time point. Compared with the model group during the same period, 60 and 240 mg/kg kiwi fruit essence element treatment group reported the diminished levels of serum and pulmonary TNF-α on day 14 and day 28. Consistently, the lung tissue HYP content and serum and pulmonary PDGF-B levels on day 28 and day 56 were reduced. In addition, the above indicators in the 240 mg/kg kiwi fruit essence treatment group were lower than those for the 60 mg/kg kiwi fruit essence treatment group. Conclusion Kiwi fruit essence can alleviate RILI in rats, which is related to the down-regulation of TNF-α expression at the early stage and decreased PDGF-B level at the middle and late stages.
Animals
;
Male
;
Rats
;
Fruit/metabolism*
;
Lung/radiation effects*
;
Lung Injury/prevention & control*
;
Oils, Volatile
;
Proto-Oncogene Proteins c-sis/metabolism*
;
Pulmonary Fibrosis
;
Rats, Sprague-Dawley
;
Tumor Necrosis Factor-alpha/metabolism*
;
Actinidia/chemistry*
4.miR-379 Inhibits Cell Proliferation, Invasion, and Migration of Vascular Smooth Muscle Cells by Targeting Insulin-Like Factor-1.
Kai LI ; Yong WANG ; Anji ZHANG ; Baixue LIU ; Li JIA
Yonsei Medical Journal 2017;58(1):234-240
PURPOSE: MicroRNAs are small non-coding RNAs that play important roles in vascular smooth muscle cell (VSMC) function. This study investigated the role of miR-379 on proliferation, invasion, and migration of VSMCs and explored underlying mechanisms thereof. MATERIALS AND METHODS: MicroRNA, mRNA, and protein levels were determined by quantitative real-time PCR and western blot. The proliferative, invasive, and migratory abilities of VSMCs were measured by CCK-8, invasion, and wound healing assay, respectively. Luciferase reporter assay was used to confirm the target of miR-379. RESULTS: Platelet-derived growth factor-bb was found to promote cell proliferation and suppress miR-379 expression in VSMCs. Functional assays demonstrated that miR-379 inhibited cell proliferation, cell invasion, and migration. Flow cytometry results further showed that miR-379 induced apoptosis in VSMCs. TargetScan analysis and luciferase report assay confirmed that insulin-like growth factor-1 (IGF-1) 3'UTR is a direct target of miR-379, and mRNA and protein levels of miR-379 and IGF-1 were inversely correlated. Rescue experiments showed that enforced expression of IGF-1 sufficiently overcomes the inhibitory effect of miR-379 on cell proliferation, invasion, and migration in VSMCs. CONCLUSION: Our results suggest that miR-379 plays an important role in regulating VSMCs proliferation, invasion, and migration by targeting IGF-1.
Apoptosis
;
Cell Movement/*physiology
;
Cell Proliferation/*physiology
;
Humans
;
Insulin
;
Insulin-Like Growth Factor I/*physiology
;
MicroRNAs/*physiology
;
Muscle, Smooth, Vascular/*cytology
;
Proto-Oncogene Proteins c-sis/*physiology
;
RNA, Messenger/metabolism
;
Real-Time Polymerase Chain Reaction
;
Sincalide/physiology
;
Wound Healing/physiology
5.Tricaicium phosphate complex pre-loaded with bone morphogenetic protein-2 or platelet derived growth factor-BB for repairing critical-size cranial defects in SD rats.
Rui-Xuan HE ; Jian-Bin XIAO ; Bing SONG ; Zhi-Hui HUANG ; Liang ZHAO
Journal of Southern Medical University 2016;36(3):345-350
OBJECTIVETo observe the effect of a new biomaterial in promoting the bone regeneration for repairing critical-size cranial defects in SD rats.
METHODSCritical-size cranial defects were induced in 3-month-old male Sprague-Dawley rats and repaired with the implants of calcium phosphate from growth factor enhanced matrix 21 (CaPfromGEM21, control), CaPfromGEM21 preloaded with 10 ng bone morphogenetic protein-2 (BMP-2), CaPfromGEM21 preloaded with 100 ng BMP-2, CaPfromGEM21 preloaded with 0.3 µg platelet-derived growth factor-BB (PDGF-BB), or CaPfromGEM21 preloaded with 3 µg PDGF-BB. The defects were examined 6 weeks after the surgery with X-ray, micro-CT, HE staining and quantitative assessments.
RESULTSX-ray showed defect repair in all the groups. The fracture line became obscure, and the defects were almost fully repaired by the regenerated bone tissues in PDGF-BB group. Micro-CT demonstarted new bone formation in the defects. The new bone volume was significantly greater in PDGF-BB groups than in BMP-2 groups (P<0.05). HE staining revealed the presence of new bones in the defects and new vessels in and around the new bones without inflammatory cells. The new bone area fraction was significantly greater in 10 ng BMP-2 group and 0.3 µg PDGF-BB group than in the control group (P<0.05), and the new vessel density was similar in the all the 4 cytokine-preloaded groups and all significantly greater than that in the blank and CaPfromGEM21 control group (P<0.05).
CONCLUSIONCaPfromGem21 combined with BMP-2 or PDGF-BB has good biocompatibility and can better promote bone regeneration for repairing bone defects.
Animals ; Biocompatible Materials ; Bone Morphogenetic Protein 2 ; pharmacology ; Bone Regeneration ; drug effects ; Calcium Phosphates ; pharmacology ; Male ; Prostheses and Implants ; Proto-Oncogene Proteins c-sis ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Skull ; pathology ; Wound Healing
6.Role of PDGF/PDGFR Pathway in Essential Thrombocythemia and Its Action Mechanism.
Li-Xia ZHOU ; En-Yu LIANG ; Jie-Yu YE ; Mo YANG
Journal of Experimental Hematology 2016;24(2):526-530
OBJECTIVETo study the role of PDGF/PDGFR in essential thrombocythemia (ET) by investigating the expression of PDGF-BB in bone marrow and the expression of PDGFR-β in bone marrow cells of patients with ET and explore the new target for treating ET patients through inhibiting the PDGFR of megakaryocytes.
METHODSThe expression level of PDGF-BB in bone marrow of ET patients and normal controls were assayed by using ELISA, the expression level of PDGFR-β (CD140) in bone marrow of ET patients and normal controls were detected by using flow cytometry, the effect of PDGF-BB in JAK2/STAT3 and PI3K/AKT pathway was detected by using flow cytometry or Werstern blot, and the effect of imatinib on the megakaryopoiesis of PDGF was observed.
RESULTSThe expression level of PDGF-BB in bone marrow of ET patients was significantly higher than that in normal controls; the expression level of PDGFR-β in bone marrow of ET patients was significantly higher than that in nornal controls; PDGF-BB could activate JAK2/STAT3 and PI3K/AKT pathway of megakaryocytes, while the imatinib could block the effect of PDGF-BB on megakaryocyte.
CONCLUSIONThe elevated PDGF-BB and PDGFR-β may be involved in ET, and the physiopathologic mechanism is that the elevated PDGF-BB activates PDGFR with subsequent activation of the JAK2/STAT3 and PI3K/AKT pathways, stimulating megakaryopoiesis. Imatinib may have a therapeutical effect on ET via blocking of PDGFR.
Bone Marrow ; metabolism ; Case-Control Studies ; Humans ; Megakaryocytes ; metabolism ; Phosphatidylinositol 3-Kinases ; Proto-Oncogene Proteins c-sis ; metabolism ; Receptor, Platelet-Derived Growth Factor beta ; metabolism ; Signal Transduction ; Thrombocythemia, Essential ; metabolism ; Thrombopoiesis
7.Effect of platelet derived growth factor-B and its receptor expression on the proliferation of renal cell carcinoma ACHN cells.
Wenling WANG ; Zhenting ZHANG ; Shuhua WANG ; Jun DU ; Xin YAO ; Email: YAOXIN1969@HOTMAIL.COM.
Chinese Journal of Oncology 2015;37(3):170-174
OBJECTIVETo study the effect of platelet derived growth factor-B and its receptor expression on the proliferation of renal cell carcinoma ACHN cells in vitro and in vivo.
METHODSPDGF-B gene was transfected into human renal carcinoma cell line ACHN cells, and the proliferation capability of ACHN cells transfected with or without PDGF-B was assessed by MTT assay. The effect of PDGF-B on the expression of p-PDGFR-β in endothelial cells and vascular smooth muscle cells (VSMC) was detected by Western blot. ACHN cells transfected with PDGF-B were injected into mice (untransfected ACHN as control) to induce tumor formation. Immunohistochemical staining was used to detect the expression of Ki-67 in tumor cells and the tumor volume was measured to compare the tumor growth in the two groups.
RESULTSThe PDGF-B expression of ACHN cells in transfected group was significantly increased than that in the untransfected group. MTT assay showed that the proliferation capability of ACHN cells in the transfected and untransfected groups had no significant differences at different time points (P>0.05). The expression of p-PDGFR-β in VSMC was significantly increased when cultured with PDGF-B overexpression culture medium. The mean tumor size of the PDGF-B group and control group was (0.305±0.108) cm(3) and (0.577±0.218) cm(3), respectively (P=0.007). Ki-67-positive tumor cells were (41.00±5.34)/HPF in the PDGF-B-transfected group and (55.80±2.95)/HPF in the untransfected group (P=0.001).
CONCLUSIONPDGF-B overexpression may up-regulate p-PDGFR-β expression of VSMC in renal cell carcinoma, and inhibit the tumor cell proliferation and tumor growth through paracrine signaling.
Animals ; Carcinoma, Renal Cell ; metabolism ; pathology ; Cell Line, Tumor ; Cell Proliferation ; Humans ; Kidney Neoplasms ; metabolism ; pathology ; Mice ; Proto-Oncogene Proteins c-sis ; Receptor, Platelet-Derived Growth Factor beta ; genetics ; metabolism
8.Nuclear factor I-C inhibits platelet-derived growth factor-induced enhancement of dermal fibroblast sensitivity to TGF-β.
Liangping ZHANG ; Yang WANG ; Rui LEI ; Hui SHEN ; Yichen SHEN ; Zhinan WU ; Jinghong XU
Journal of Southern Medical University 2015;35(9):1245-1250
OBJECTIVETo investigate the effect of nuclear factor I-C (NFI-C) on platelet-derived growth factor (PDGF)-induced up-regulation of TGF-β receptor II (TβRII) in dermal fibroblasts.
METHODSA lentiviral vector containing NFI-C sequence (Lenti-GFP-NFI-C) was transfected into a human foreskin fibroblast cell line (HFF-1). Cultured HFF-1 cells, cells transfected with Lenti-GFP-NFI-C, and cells transfected with a negative virus were stimulated with PDGF-BB, and Western blotting and RT-qPCR were used to detect the expression levels of TβRII in the treated cells.
RESULTSPDGF treatment significantly increased the expression level of TβRII in HFF-1 cells (P<0.05). The cells transfected with Lenti-GFP-NFI-C expressed a significantly lower level of TβRII than non-transfected cells in response to PDGF stimulation (P<0.05), but the negative virus showed no such inhibitory effect (P>0.05). No significant difference was found in the expression level of TβRII protein between cells transfected with Lenti-GFP-NFI-C-transfection before PDGF stimulation and the blank control cells.
CONCLUSIONNFI-C can inhibit PDGF-induced up-regulation of TβRII and thus reduce the sensitivity of the dermal fibroblasts to TGF-β.
Cell Line ; Fibroblasts ; drug effects ; Genetic Vectors ; Humans ; Lentivirus ; NFI Transcription Factors ; genetics ; Platelet-Derived Growth Factor ; pharmacology ; Protein-Serine-Threonine Kinases ; metabolism ; Proto-Oncogene Proteins c-sis ; Receptors, Transforming Growth Factor beta ; metabolism ; Transfection ; Transforming Growth Factor beta ; pharmacology ; Up-Regulation
9.Effect of platelet-derived growth factor-BB on rat corpus cavernosum smooth muscle cell proliferation, migration and phenotypic modulation.
Fengzhi CHEN ; Shuhua HE ; Haitao SHAN ; Haibo ZHANG ; Yanbing LIAN ; Anyang WEI
Journal of Southern Medical University 2015;35(7):971-976
OBJECTIVETo study the effect of platelet-derived growth factor-BB (PDGFBBB) on rat corpus cavernosum smooth muscle (CCSM) cell proliferation, migration and phenotypic modulation and explore the underlying mechanisms.
METHODSWistar rat CCSM cells were obtained through a modified tissue culture method and identified by immunofluorescence assay. The effect of PDGFBB on the proliferation of CCSM cells was investigated using a CCK-8 kit and the optimum PDGFBB concentration for cell treatment was determined. CCSM cells were treated with vehicle or PDGF-BB at the optimum concentration, and the cell migration was examined using scratch assay; the mRNA expression of the transcription factor myocardin and the contractile phenotype markers αSMA and SMMHC in CCSM cells were determined by qRT-PCR at 24 h and 48 h. The protein expression of myocardin in CCSM cells incubated with PDGFBB for 0, 24 and 48 h was examined by Western blotting.
RESULTIn CCSM cell culture, 96.5%and 96% of the cells were positive for αSMA and smoothelin, respectively. PDGFBB at different concentrations markedly promoted the proliferation of CCSM cells; the optimum PDGFBB concentration for enhancing cell proliferation was 12.5 ng/mL, which induced the migration of CCSM cells and significantly reduced the mRNA expressions of myocardin, αSMA and SMMHC (P<0.01). Exposure to PDGFBB decreased the protein expression of myocardin as the exposure time extended (within 48 h).
CONCLUSIONCCSM cells of a high purity can be obtained by the modified tissue culture method. PDGFBB can promote the proliferation and migration of CCSM cells and cause a phenotypic conversion from the contractile to the synthetic type possibly by down-regulating myocardin.
Actins ; metabolism ; Animals ; Cell Movement ; drug effects ; Cell Proliferation ; drug effects ; Cells, Cultured ; Down-Regulation ; Male ; Myocytes, Smooth Muscle ; cytology ; drug effects ; Myosin Heavy Chains ; metabolism ; Nuclear Proteins ; metabolism ; Penis ; cytology ; Phenotype ; Proto-Oncogene Proteins c-sis ; pharmacology ; RNA, Messenger ; Rats ; Rats, Wistar ; Trans-Activators ; metabolism
10.Scoparone interferes with STAT3-induced proliferation of vascular smooth muscle cells.
Sungmi PARK ; Jeong Kook KIM ; Chang Joo OH ; Seung Hee CHOI ; Jae Han JEON ; In Kyu LEE
Experimental & Molecular Medicine 2015;47(3):e145-
Scoparone, which is a major constituent of Artemisia capillaries, has been identified as an anticoagulant, hypolipidemic, vasorelaxant, anti-oxidant and anti-inflammatory drug, and it is used for the traditional treatment of neonatal jaundice. Therefore, we hypothesized that scoparone could suppress the proliferation of VSMCs by interfering with STAT3 signaling. We found that the proliferation of these cells was significantly attenuated by scoparone in a dose-dependent manner. Scoparone markedly reduced the serum-stimulated accumulation of cells in the S phase and concomitantly increased the proportion of cells in the G0/G1 phase, which was consistent with the reduced expression of cyclin D1, phosphorylated Rb and survivin in the VSMCs. Cell adhesion markers, such as MCP-1 and ICAM-1, were significantly reduced by scoparone. Interestingly, this compound attenuated the increase in cyclin D promoter activity by inhibiting the activities of both the WT and active forms of STAT3. Similarly, the expression of a cell proliferation marker induced by PDGF was decreased by scoparone with no change in the phosphorylation of JAK2 or Src. On the basis of the immunofluorescence staining results, STAT3 proteins phosphorylated by PDGF were predominantly localized to the nucleus and were markedly reduced in the scoparone-treated cells. In summary, scoparone blocks the accumulation of STAT3 transported from the cytosol to the nucleus, leading to the suppression of VSMC proliferation through G1 phase arrest and the inhibition of Rb phosphorylation. This activity occurs independent of the form of STAT3 and upstream of kinases, such as Jak and Src, which are correlated with abnormal vascular remodeling due to the presence of an excess of growth factors following vascular injury. These data provide convincing evidence that scoparone may be a new preventative agent for the treatment of cardiovascular diseases.
Active Transport, Cell Nucleus
;
Animals
;
Biomarkers
;
Cell Cycle Proteins/genetics/metabolism
;
Cell Movement/drug effects
;
Cell Proliferation/drug effects
;
Cells, Cultured
;
Coumarins/*pharmacology
;
Gene Expression Regulation/drug effects
;
Hep G2 Cells
;
Humans
;
Muscle, Smooth, Vascular/*cytology
;
Myocytes, Smooth Muscle/*metabolism
;
Proto-Oncogene Proteins c-sis/metabolism
;
Rats
;
STAT3 Transcription Factor/genetics/*metabolism
;
Signal Transduction/drug effects
;
Transcription, Genetic

Result Analysis
Print
Save
E-mail