1.Effect of acupuncture on chondrocyte autophagy in rats of knee osteoarthritis based on PI3K/Akt/mTOR signaling pathway.
Dekun LI ; Changfeng YAO ; Ziliang SHAN ; Zheng ZHOU ; Xianji ZHANG ; Kewen WANG ; Shaolin DU
Chinese Acupuncture & Moxibustion 2025;45(10):1459-1467
OBJECTIVE:
To observe the effect of acupuncture on chondrocyte autophagy in rats of knee osteoarthritis (KOA) and explore its underlying mechanisms.
METHODS:
Forty male SPF-grade SD rats were randomized into a blank group, a model group, a suspension group, an acupuncture group, and a combined therapy group, 8 rats in each one. Except the blank group, KOA model was prepared by the injection with papain. The suspension exercise therapy (10 min each time, three times daily), acupuncture (at "Yanglingquan" [GB34], "Zusanli" [ST36], and "Dubi" [ST35] on the right side, 30 min each intervention, once daily) and the combined therapy (the suspension exercise therapy combined with acupuncture) were delivered in the suspension group, the acupuncture group and the combined therapy group, respectively. The intervention of each group was performed continuously for 6 days, and 4 consecutive weeks, at the interval of 1 day. Before and after intervention, Lequesne MG score was assessed in the rats. After intervention, HE staining was adopted to observe the cartilaginous tissue morphology of the right knee joints, and Mankin score was evaluated; the serum levels of interleukin (IL)-1β, IL-6, and tumor neurosis factor-α (TNF-α) were measured using ELISA; the real-time PCR was provided to determine the mRNA expression of collagen protein type Ⅱ(COL2), collagen protein type Ⅹ (COL10), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR), and autophagy-regulated protein (Beclin-1) in the cartilaginous tissue of the right knee joint; Western blot was employed to detect the protein expression of PI3K, phosphorylated PI3K (p-PI3K), Akt, phosphorylated Akt (p-Akt), mTOR, phosphorylated mTOR (p-mTOR) and Beclin-1 in the cartilaginous tissue of the right knee joint.
RESULTS:
Compared with the blank group, the rats in the model group showed the higher Lequesne MG score (P<0.01), thinner cartilage of the right knee, reduced chondrocytes and disordered arrangement, and higher Mankin score (P<0.01). Besides, in the model group, the serum levels of IL-1β, IL-6 and TNF-α were elevated (P<0.01), the mRNA expression of COL2 and Beclin-1 and the protein expression of Beclin-1 decreased (P<0.01), the mRNA expression of COL10, PI3K, Akt and mTOR, and the protein expression of p-PI3K, p-Akt and p-mTOR increased (P<0.01) in the cartilaginous tissue of the right knee joint. Compared with the model group, in the suspension group, the acupuncture group and the combined therapy group, the Lequesne MG scores were reduced (P<0.01), the cartilage of the right knee was thickened, the arrangement of chondrocytes was improved, and the Mankin scores were lower (P<0.01). Besides, in these intervention groups, the serum levels of IL-1β, IL-6 and TNF-α were reduced (P<0.01), the mRNA expression of COL2 and Beclin-1 and the protein expression of Beclin-1 increased (P<0.05, P<0.01), the mRNA expression of COL10, PI3K, Akt and mTOR, and the protein expression of p-PI3K, p-Akt and p-mTOR decreased (P<0.05, P<0.01) in the cartilaginous tissue of the right knee joint. When compared with the suspension group and the acupuncture group, in the combined therapy group, the Lequesne MG score was reduced (P<0.01), and the Mankin score was reduced (P<0.05, P<0.01). Besides, the serum levels of IL-1β, IL-6 and TNF-α were reduced (P<0.05), the mRNA expression of COL2 and Beclin-1 and the protein expression of Beclin-1 increased (P<0.05), the mRNA expression of COL10, PI3K, Akt and mTOR, and the protein expression of p-PI3K, p-Akt and p-mTOR decreased (P<0.05, P<0.01) in the cartilaginous tissue of the right knee joint.
CONCLUSION
Acupuncture can promote cartilage regeneration of knee joint and autophagy in KOA rats, alleviate inflammation, so as to retard cartilage degeneration, which may be possibly associated with the PI3K/Akt/mTOR signaling pathway.
Animals
;
Male
;
Acupuncture Therapy
;
Proto-Oncogene Proteins c-akt/genetics*
;
TOR Serine-Threonine Kinases/genetics*
;
Osteoarthritis, Knee/physiopathology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Rats
;
Signal Transduction
;
Rats, Sprague-Dawley
;
Chondrocytes/metabolism*
;
Humans
;
Autophagy
;
Acupuncture Points
2.Mechanism of acupuncture for chronic blunt injury of lumbar muscle based on IGF-1/PI3K/AKT pathway.
Qun CHEN ; Dongmei WANG ; Zhengyu YANG ; Xiulian ZHENG ; Jianping LIN ; Shaoqing CHEN
Chinese Acupuncture & Moxibustion 2025;45(12):1759-1769
OBJECTIVE:
To explore the effect and mechanism of acupuncture at "Weizhong" (BL40) on microcirculation of paravertebral skeletal muscle in rats with chronic blunt injury of lumbar muscle based on the insulin-like growth factor-1 (IGF-1)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway.
METHODS:
Forty-eight SPF-grade SD rats were randomized into a blank group (8 rats) and a modeling group (40 rats). Chronic blunt injury model was established by weight impact method in the modeling group. Forty rats were successfully modeled, and were randomly divided into a model group, an acupuncture at Weizhong group (Weizhong group), an acupuncture at non-acupoint group (non-acupoint group), an inhibitor group, and an inhibitor+acupuncture at Weizhong group (inhibitor+Weizhong group), 8 rats in each group. In the Weizhong group and the inhibitor+Weizhong group, acupuncture was applied at bilateral "Weizhong" (BL40). In the non-acupoint group, acupuncture was applied at non-acupoints, i.e. points 0.5 cm inward from bilateral "Weizhong" (BL40). The acupuncture intervention was delivered 20 min each time, once a day for continuous 2 weeks. In the inhibitor group and the inhibitor+Weizhong group, intraperitoneal injection of IGF-1 receptor (IGF-1R) inhibitor was given once a day, at a dosage of 2 mg/100 g, for continuous 2 weeks. Before modeling and on the 1st, 7th and 14th days of intervention, the body mass was measured. Before and after modeling, and after intervention, the limb grip strength and paw withdrawal threshold (PWT) were measured. After intervention, the morphology of psoas muscle was observed by HE staining; the ultrastructure of psoas muscle capillaries was observed by electron microscopy; the levels of serum vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) were detected by ELISA; and the protein and mRNA expression of IGF-1, IGF-1R, PI3K, AKT of psoas muscle was detected by Western blot and real-time PCR.
RESULTS:
Compared with the blank group, in the model group, the body mass on the 7th and 14th days of intervention, the limb grip strength, and the PWT of left and right hind feet were decreased (P<0.001, P<0.01); the skeletal muscle cells showed enlarged intercellular space, loosely arranged and irregularly shaped, the capillaries in the psoas muscle tissues were edematous, and the lumen of the blood vessels was obviously atrophied; the levels of serum VEGF and eNOS were decreased (P<0.001); in psoas muscle, the protein expression of IGF-1 and IGF-1R, as well as the p-PI3K/PI3K, p-AKT/AKT values were decreased (P<0.001), the mRNA expression of IGF-1, IGF-1R, PI3K and AKT was decreased (P<0.001, P<0.05). Compared with the model group, in the Weizhong group, the body weight was increased on the 7th and 14th days of intervention (P<0.001), the limb grip strength and the PWT of the left and right hind feet were increased (P<0.001, P<0.01); the arrangement of the skeletal muscle cells was relatively tight and the intercellular space was reduced, the blood vessels tended to be regular and the structure of the basement membrane was continuous, while the lumens of blood vessels were collapsed locally; the levels of serum VEGF and eNOS were increased (P<0.001); in psoas muscle, the protein expression of IGF-1 and IGF-1R, as well as the p-PI3K/PI3K, p-AKT/AKT values were increased (P<0.001), the mRNA expression of IGF-1, IGF-1R, PI3K and AKT was increased (P<0.001, P<0.01). Compared with the model group, in the inhibitor group, the body mass was decreased on the 7th and 14th days of intervention (P<0.05, P<0.01); the limb grip strength and the PWT of the left hind foot were decreased (P<0.01, P<0.001); the intercellular space of skeletal muscle cells was larger, the nuclei of the cells and erythrocytes were scattered in the intercellular space, the damage of the capillaries in the muscular tissues was serious, the collagen fibers were sparsely distributed and disorganized; the levels of serum VEGF and eNOS were decreased (P<0.001, P<0.01); in psoas muscle, the protein expression of IGF-1 and IGF-1R, as well as the p-PI3K/PI3K and p-AKT/AKT values were decreased (P<0.01, P<0.05, P<0.001), the mRNA expression of IGF-1, IGF-1R, PI3K, and AKT was decreased (P<0.01, P<0.001, P<0.05). Compared with the Weizhong group, in the non-acupoint group and the inhibitor+Weizhong group, the body mass was decreased on the 7th and 14th days of intervention (P<0.001, P<0.01), the limb grip strength was decreased (P<0.001); the morphology of muscle cell was relatively poor, with generally irregular, there was mild collapse and atrophy in the vascular lumen, and mild edema in the endothelial cells; the levels of serum VEGF and eNOS were decreased (P<0.001); in psoas muscle, the protein expression of IGF-1 and IGF-1R, as well as the p-PI3K/PI3K and p-AKT/AKT values were decreased (P<0.01, P<0.001), the mRNA expression of IGF-1, IGF-1R, PI3K, and AKT was decreased (P<0.001, P<0.01, P<0.05). Compared with the Weizhong group, the PWT of the left hind foot was decreased in the non-acupoint group (P<0.001), and PWT of the left and right hind feet was decreased in the inhibitor+Weizhong group (P<0.001).
CONCLUSION
Acupuncture at "Weizhong" (BL40) promotes lumbar muscle repair in chronic low back pain, its mechanism may be related to the activation of the IGF-1/PI3K/AKT pathway, thereby improving the microcirculation.
Animals
;
Insulin-Like Growth Factor I/genetics*
;
Acupuncture Therapy
;
Rats, Sprague-Dawley
;
Rats
;
Proto-Oncogene Proteins c-akt/genetics*
;
Male
;
Humans
;
Muscle, Skeletal/metabolism*
;
Signal Transduction
;
Phosphatidylinositol 3-Kinases/genetics*
;
Wounds, Nonpenetrating/metabolism*
;
Acupuncture Points
3.Paroxetine alleviates dendritic cell and T lymphocyte activation via GRK2-mediated PI3K-AKT signaling in rheumatoid arthritis.
Tingting LIU ; Chao JIN ; Jing SUN ; Lina ZHU ; Chun WANG ; Feng XIAO ; Xiaochang LIU ; Liying LV ; Xiaoke YANG ; Wenjing ZHOU ; Chao TAN ; Xianli WANG ; Wei WEI
Chinese Medical Journal 2025;138(4):441-451
BACKGROUND:
G protein-coupled receptor kinase 2 (GRK2) could participate in the regulation of diverse cells via interacting with non-G-protein-coupled receptors. In the present work, we explored how paroxetine, a GRK2 inhibitor, modulates the differentiation and activation of immune cells in rheumatoid arthritis (RA).
METHODS:
The blood samples of healthy individuals and RA patients were collected between July 2021 and March 2022 from the First Affiliated Hospital of Anhui Medical University. C57BL/6 mice were used to induce the collagen-induced arthritis (CIA) model. Flow cytometry analysis was used to characterize the differentiation and function of dendritic cells (DCs)/T cells. Co-immunoprecipitation was used to explore the specific molecular mechanism.
RESULTS:
In patients with RA, high expression of GRK2 in peripheral blood lymphocytes, accompanied by the increases of phosphatidylinositol 3 kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR). In animal model, a decrease in regulatory T cells (T regs ), an increase in the cluster of differentiation 8 positive (CD8 + ) T cells, and maturation of DCs were observed. Paroxetine, when used in vitro and in CIA mice, restrained the maturation of DCs and the differentiation of CD8 + T cells, and induced the proportion of T regs . Paroxetine inhibited the secretion of pro-inflammatory cytokines, the expression of C-C motif chemokine receptor 7 in DCs and T cells. Simultaneously, paroxetine upregulated the expression of programmed death ligand 1, and anti-inflammatory cytokines. Additionally, paroxetine inhibited the PI3K-AKT-mTOR metabolic pathway in both DCs and T cells. This was associated with a reduction in mitochondrial membrane potential and changes in the utilization of glucose and lipids, particularly in DCs. Paroxetine reversed PI3K-AKT pathway activation induced by 740 Y-P (a PI3K agonist) through inhibiting the interaction between GRK2 and PI3K in DCs and T cells.
CONCLUSION
Paroxetine exerts an immunosuppressive effect by targeting GRK2, which subsequently inhibits the metabolism-related PI3K-AKT-mTOR pathway of DCs and T cells in RA.
G-Protein-Coupled Receptor Kinase 2/metabolism*
;
Arthritis, Rheumatoid/immunology*
;
Animals
;
Dendritic Cells/metabolism*
;
Paroxetine/therapeutic use*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Mice
;
Humans
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Male
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Lymphocyte Activation/drug effects*
;
Female
;
T-Lymphocytes/metabolism*
;
Middle Aged
4.Effect of "Zhibian" (BL54)-toward-"Shuidao" (ST28) acupuncture on reproductive function in mice with asthenozoospermia based on mitochondrial apoptosis.
Jianheng HAO ; Boya CHANG ; Jia REN ; Zhen GAO ; Yanlin ZHANG ; Haijun WANG ; Laixi JI
Chinese Acupuncture & Moxibustion 2025;45(1):71-81
OBJECTIVE:
To observe the effects of the "Zhibian" (BL54)-toward-"Shuidao" (ST28) acupuncture on key regulatory factors during mitochondrial apoptosis of testicular tissue in asthenozoospermia mice, and explore the potential mechanism of the protective effect of acupuncture on reproductive function.
METHODS:
Thirty C57BL/6 male mice were randomly divided into a blank group, a model group and an acupuncture group, 10 mice in each group. In the model and the acupuncture groups, the intraperitoneal injection of cyclophosphamide (30 mg•kg-1•d-1) was delivered for 7 days to prepare the asthenozoospermia model. After the success of modeling, the modeled mice in the acupuncture group were intervened with "Zhibian" (BL54)-toward-"Shuidao" (ST28) acupuncture, once daily and the needles were retained for 20 min. The duration of the intervention was 2 weeks. The general condition of each mouse was observed, and the body mass was recorded before modeling, after modeling and after intervention completion. After intervention, the testicular mass was recorded and the weight coefficient was calculated, and the mouse sperm quality was examined; the serum contents of testosterone (T), follicle stimulating hormone (FSH) and luteinizing hormone (LH) were detected using ELISA, the morphology of testicular tissue was observed using HE, the mitochondrial ultra-microstructure of testicular tissue was observed under transmission electrone microscopy, the mitochondrial membrane potential level of testicular tissue was detected using JC-1 staining, the positive rate of apoptosis cell of testicular tissue was observed using TUNEL; and the mRNA and protein expression of b-cell lymphocytoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), cytochrome c (Cyt C), apoptotic protease-activating factor1 (Apaf-1), Caspase-9 and Caspase-3 of testicular tissue was detected using real-time quantitative fluorescence PCR and Western blot methods separately; and the positive expression of Cleaved Caspase-3 of the testicular tissue was detected using immunohistochemistry.
RESULTS:
Compared with the blank group, the mice were in listless spirits, had shaggy hairs, the reduced appetite and movement, and weight loss in the model group (P<0.01); the testicular mass and the weight coefficient decreased (P<0.01); the total number of sperms, sperm motility, and sperm viability were declined (P<0.01); while the levels of serum T, FSH, and LH were dropped (P<0.01). The morphology of seminiferous tubules in testicular tissue was abnormal, the number of spermatogenic cells and the number of mitochondria decreased, the inner mitochondrial crest was fractured and lost, and vacuoles appeared. The level of mitochondrial membrane potential was reduced (P<0.01); and the positive rate of apoptosis cell in testicular tissue increased (P<0.01). The mRNA and protein expression of Bax, Cyt C, Apaf-1, Caspase-9 and Caspase-3 was elevated (P<0.01, P<0.05), the mRNA and protein expression of Bcl-2 was dropped (P<0.01), and the average absorbance value of Cleaved Caspase-3 increased (P<0.01). When compared with the model group, in the acupuncture group, the general condition of mice was improved, the testicular mass and the weight coefficient elevated (P<0.01); the total number of sperms, sperm motility, and sperm viability increased (P<0.01); while the levels of serum T, FSH, and LH rose (P<0.01). The pathological morphology of testicular tissue and the inner mitochondrial ultra-microstructure were ameliorated, the level of mitochondrial membrane potential was elevated (P<0.01); the positive rate of apoptosis cell was reduced (P<0.01). The mRNA and protein expression of Bax, Cyt C, Apaf-1, Caspase-9 and Caspase-3 was dropped (P<0.01, P<0.05), the mRNA and protein expression of Bcl-2 elevated (P<0.05), and the average absorbance value of Cleaved Caspase-3 declined (P<0.01).
CONCLUSION
"Zhibian" (BL54)-toward- "Shuidao" (ST28) acupuncture may ameliorate mouse reproductive function by inhibiting mitochondrial apoptosis pathway, alleviating testicular tissue damage in the asthenospermia mice induced by cyclophosphamide.
Animals
;
Male
;
Mice
;
Apoptosis
;
Acupuncture Therapy
;
Mitochondria/metabolism*
;
Asthenozoospermia/genetics*
;
Humans
;
Testis/metabolism*
;
Mice, Inbred C57BL
;
Spermatozoa/metabolism*
;
Acupuncture Points
;
Sperm Motility
;
Testosterone/blood*
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
Caspase 3/genetics*
;
Follicle Stimulating Hormone/blood*
;
Reproduction
;
Cytochromes c/genetics*
;
bcl-2-Associated X Protein/genetics*
;
Apoptotic Protease-Activating Factor 1/genetics*
5.Effect of moxibustion on central insulin resistance related proteins in diabetic rats with cognitive decline.
Min YE ; Aihong YUAN ; Lele ZHANG ; Hongyu XIE ; Hudie SONG ; Yinqiu FAN ; Jun YANG
Chinese Acupuncture & Moxibustion 2025;45(2):185-192
OBJECTIVE:
To investigate the effect of moxibustion on central insulin resistance related proteins of the rats suffering from diabetic cognitive decline, and analyze the underlying mechanism of moxibustion for cognition improvement.
METHODS:
Using the intraperitoneal injection of STZ combined with a high-fat diet, the rat model of diabetic cognitive decline were prepared. Twenty successfully-modeled rats were assigned randomly into a model group and a moxibustion group, 10 rats in each one. Besides, a blank group was set up with 10 rats collected. In the moxibustion group, suspending moxibustion was applied to "Baihui" (GV20), "Shenting" (GV24) and "Dazhui" (GV14) at the same time, 20 min in each intervention, once a day, and 6 interventions were delivered weekly and the duration of treatment was consecutive 4 weeks. The random blood glucose was measured using glucometer, and the learning-memory ability was detected by water maze test. HE staining was used to observe the morphology of neurons in the hippocampal tissue, real-time PCR assay was to detect mRNA expression of insulin receptor substrate 1 (IRS1), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) in the hippocampal tissue. The Western blot method was employed to detect the protein expression of IRS1, PI3K, AKT, phosphorylated IRS1 (p-IRS1), phosphorylated PI3K (p-PI3K) and phosphorylated AKT (p-AKT) in the hippocampal tissue, and the ratio of p-IRS1/IRS1, p-PI3K/PI3K and p-AKT/AKT was calculated separately. The immunofluorescence intensity of p-IRS1, p-PI3K, and p-AKT was measured using immunofluorescence.
RESULTS:
Compared with the blank group, the rats of the model group exhibited higher random blood glucose (P<0.001), longer escape latency (P<0.001), severe pathological damage in the hippocampus, lower mRNA expression of IRS1, PI3K, and AKT (P<0.001), reduced ratio of p-IRS1/IRS1, p-PI3K/PI3K and p-AKT/AKT (P<0.001), and declined immunofluorescence intensity of p-IRS1, p-PI3K, and p-AKT in the hippocampal tissue (P<0.001). In comparison with the model group, for the rats of the moxibustion group, the random blood glucose decreased (P<0.05), the escape latency was shortened (P<0.01), the hippocampal pathological damage was attenuated, the mRNA expression of IRS1, PI3K and AKT increased (P<0.01), the ratio of p-IRS1/IRS1, p-PI3K/PI3K and p-AKT/AKT was elevated (P<0.01, P<0.05), and the immunofluorescence intensity of p-IRS1, p-PI3K, and p-AKT in the hippocampal tissue was strengthened (P<0.01, P<0.05).
CONCLUSION
In diabetic rats experiencing cognitive decline, moxibustion can enhance the learning-memory ability, which may be attributed to modulating the protein expression of IRS1, PI3K, and AKT, and their phosphorylation, activating insulin signal transduction, and reducing central insulin resistance.
Animals
;
Moxibustion
;
Insulin Resistance
;
Rats
;
Male
;
Insulin Receptor Substrate Proteins/genetics*
;
Rats, Sprague-Dawley
;
Humans
;
Proto-Oncogene Proteins c-akt/genetics*
;
Cognitive Dysfunction/genetics*
;
Diabetes Mellitus, Experimental/therapy*
;
Hippocampus/metabolism*
;
Acupuncture Points
;
Phosphatidylinositol 3-Kinases/genetics*
6.Effect of moxibustion at "Shenque" (CV8) on the expression of BDNF and c-fos in the urinary control brain regions of rats with neurogenic bladder after spinal cord injury.
Han YU ; Yuanbo FU ; Huilin LIU ; Yuzhuo ZHANG ; Yutong NI ; Qingdai LI ; Yi XU
Chinese Acupuncture & Moxibustion 2025;45(5):638-645
OBJECTIVE:
To observe the effects of moxibustion at "Shenque" (CV8) on urodynamics and the expression of brain-derived neurotrophic factor (BDNF) and immediate early gene (c-fos) in pontine micturition center (PMC), periaqueductal gray (PAG), medial prefrontal cortex (mPFC) of neurogenic bladder (NB) rats after spinal cord injury.
METHODS:
Twenty-four SPF female SD rats were randomly divided into a sham-operation group (6 rats) and a modeling group (18 rats). In the modeling group, T9 complete spinal cord transection method was used to establish a neurogenic detrusor overactivity model, and the 12 rats with successful modeling were randomized into a model group and a moxibustion group, with 6 rats in each group. The rats in the moxibustion group were treated with ginger/salt-insulated moxibustion at "Shenque" (CV8), and 4 consecutive moxa cones were delivered in one intervention. Moxibustion was operated once daily and for 14 days. After intervention completion, the urodynamic indexes of rats in each group were detected. Fluorescence quantitative PCR was used to detect the mRNA expression of BDNF and c-fos in PMC, PAG and mPFC in rats. Western blot was used to detect the protein expression of BDNF and c-fos in PMC, PAG and mPFC.
RESULTS:
The rats in the sham-operation group did not show phasic detrusor contraction during bladder filling. Compared with the model group, the frequency and amplitude of the phasic detrusor contraction were reduced 5 min before urine leakage in the rats of the moxibustion group (P<0.05), and the duration of the first phasic detrusor contraction during bladder filling was prolonged (P<0.05). Compared with the sham-operation group, the mRNA and protein expression of BDNF and c-fos in PMC, PAG and mPFC increased in the model group (P<0.05). Compared with the model group, the mRNA and protein expression of BDNF and c-fos in PMC, PAG and mPFC decreased in the moxibustion group (P<0.05).
CONCLUSION
Moxibustion at "Shenque" (CV8) can improve the phasic contraction during bladder filling in NB rats after spinal cord injury, possibly by down-regulating the mRNA and protein expression of BDNF and c-fos in PMC, PAG, and mPFC.
Animals
;
Moxibustion
;
Female
;
Rats
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Rats, Sprague-Dawley
;
Acupuncture Points
;
Spinal Cord Injuries/metabolism*
;
Urinary Bladder, Neurogenic/etiology*
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Humans
;
Urinary Bladder/physiopathology*
;
Brain/metabolism*
;
Urination
7.Arsenic trioxide preconditioning attenuates hepatic ischemia- reperfusion injury in mice: Role of ERK/AKT and autophagy.
Chaoqun WANG ; Hongjun YU ; Shounan LU ; Shanjia KE ; Yanan XU ; Zhigang FENG ; Baolin QIAN ; Miaoyu BAI ; Bing YIN ; Xinglong LI ; Yongliang HUA ; Zhongyu LI ; Dong CHEN ; Bangliang CHEN ; Yongzhi ZHOU ; Shangha PAN ; Yao FU ; Hongchi JIANG ; Dawei WANG ; Yong MA
Chinese Medical Journal 2025;138(22):2993-3003
BACKGROUND:
Arsenic trioxide (ATO) is indicated as a broad-spectrum medicine for a variety of diseases, including cancer and cardiac disease. While the role of ATO in hepatic ischemia/reperfusion injury (HIRI) has not been reported. Thus, the purpose of this study was to identify the effects of ATO on HIRI.
METHODS:
In the present study, we established a 70% hepatic warm I/R injury and partial hepatectomy (30% resection) animal models in vivo and hepatocytes anoxia/reoxygenation (A/R) models in vitro with ATO pretreatment and further assessed liver function by histopathologic changes, enzyme-linked immunosorbent assay, cell counting kit-8, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Small interfering RNA (siRNA) for extracellular signal-regulated kinase (ERK) 1/2 was transfected to evaluate the role of ERK1/2 pathway during HIRI, followed by ATO pretreatment. The dynamic process of autophagic flux and numbers of autophagosomes were detected by green fluorescent protein-monomeric red fluorescent protein-LC3 (GFP-mRFP-LC3) staining and transmission electron microscopy.
RESULTS:
A low dose of ATO (0.75 μmol/L in vitro and 1 mg/kg in vivo ) significantly reduced tissue necrosis, inflammatory infiltration, and hepatocyte apoptosis during the process of hepatic I/R. Meanwhile, ATO obviously promoted the ability of cell proliferation and liver regeneration. Mechanistically, in vitro studies have shown that nontoxic concentrations of ATO can activate both ERK and phosphoinositide 3-kinase-serine/threonine kinase (PI3K-AKT) pathways and further induce autophagy. The hepatoprotective mechanism of ATO, at least in part, relies on the effects of ATO on the activation of autophagy, which is ERK-dependent.
CONCLUSION
Low, non-toxic doses of ATO can activate ERK/PI3K-AKT pathways and induce ERK-dependent autophagy in hepatocytes, protecting liver against I/R injury and accelerating hepatocyte regeneration after partial hepatectomy.
Animals
;
Arsenic Trioxide
;
Autophagy/physiology*
;
Reperfusion Injury/prevention & control*
;
Mice
;
Male
;
Proto-Oncogene Proteins c-akt/physiology*
;
Arsenicals/therapeutic use*
;
Oxides/therapeutic use*
;
Liver/metabolism*
;
Extracellular Signal-Regulated MAP Kinases/metabolism*
;
Mice, Inbred C57BL
8.SMUG1 promoted the progression of pancreatic cancer via AKT signaling pathway through binding with FOXQ1.
Zijian WU ; Wei WANG ; Jie HUA ; Jingyao ZHANG ; Jiang LIU ; Si SHI ; Bo ZHANG ; Xiaohui WANG ; Xianjun YU ; Jin XU
Chinese Medical Journal 2025;138(20):2640-2656
BACKGROUND:
Pancreatic cancer is a lethal malignancy prone to gemcitabine resistance. The single-strand selective monofunctional uracil DNA glycosylase (SMUG1), which is responsible for initiating base excision repair, has been reported to predict the outcomes of different cancer types. However, the function of SMUG1 in pancreatic cancer is still unclear.
METHODS:
Gene and protein expression of SMUG1 as well as survival outcomes were assessed by bioinformatic analysis and verified in a cohort from Fudan University Shanghai Cancer Center. Subsequently, the effect of SMUG1 on proliferation, cell cycle, and migration abilities of SMUG1 cells were detected in vitro . DNA damage repair, apoptosis, and gemcitabine resistance were also tested. RNA sequencing was performed to determine the differentially expressed genes and signaling pathways, followed by quantitative real-time polymerase chain reaction and Western blotting verification. The cancer-promoting effect of forkhead box Q1 (FOXQ1) and SMUG1 on the ubiquitylation of myelocytomatosis oncogene (c-Myc) was also evaluated. Finally, a xenograft model was established to verify the results.
RESULTS:
SMUG1 was highly expressed in pancreatic tumor tissues and cells, which also predicted a poor prognosis. Downregulation of SMUG1 inhibited the proliferation, G1 to S transition, migration, and DNA damage repair ability against gemcitabine in pancreatic cancer cells. SMUG1 exerted its function by binding with FOXQ1 to activate the Protein Kinase B (AKT)/p21 and p27 pathway. Moreover, SMUG1 also stabilized the c-Myc protein via AKT signaling in pancreatic cancer cells.
CONCLUSIONS
SMUG1 promotes proliferation, migration, gemcitabine resistance, and c-Myc protein stability in pancreatic cancer via protein kinase B signaling through binding with FOXQ1. Furthermore, SMUG1 may be a new potential prognostic and gemcitabine resistance predictor in pancreatic ductal adenocarcinoma.
Humans
;
Pancreatic Neoplasms/pathology*
;
Forkhead Transcription Factors/genetics*
;
Signal Transduction/genetics*
;
Animals
;
Cell Line, Tumor
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cell Proliferation/physiology*
;
Mice
;
Uracil-DNA Glycosidase/genetics*
;
Female
;
Male
;
Gemcitabine
;
Mice, Nude
;
Apoptosis/physiology*
;
Deoxycytidine/analogs & derivatives*
;
Cell Movement/genetics*
9.Novel paradigms in KRAS targeting: Unveiling strategies to combat drug resistance.
Xiyuan LUO ; Feihan ZHOU ; Yuemeng TANG ; Xiaohong LIU ; Ruilin XIAO ; Minzhi GU ; Jialu BAI ; Decheng JIANG ; Gang YANG ; Lei YOU ; Yupei ZHAO
Chinese Medical Journal 2025;138(18):2243-2267
The Kirsten rat sarcoma viral oncogene homolog ( KRAS ) mutation is one of the most prevalent activating alterations in cancer. It indicates a poor overall prognosis due to its highly invasive nature. Although several KRAS inhibitors have been developed in recent years, a significant clinical challenge has emerged as a substantial proportion of patients eventually develop resistance to these therapies. Therefore, identifying determinants of drug resistance is critical for guiding treatment strategies. This review provides a comprehensive overview of the mutation landscape and molecular mechanisms of KRAS activity in various cancers. Meanwhile, it summaries the progress and prospects of small molecule KRAS inhibitors undergoing clinical trials. Furthemore, this review explores potential strategies to overcome drug resistance, with the ultimate goal of steering toward patient-centric precision oncology in the foreseeable future.
Humans
;
Drug Resistance, Neoplasm/drug effects*
;
Proto-Oncogene Proteins p21(ras)/metabolism*
;
Mutation/genetics*
;
Neoplasms/genetics*
;
Antineoplastic Agents/therapeutic use*
10.c-Met-targeted chimeric antigen receptor T cells inhibit human serous ovarian cancer cell SKOV-3 in vitro.
Na-Na DU ; Yan-Jun ZHANG ; Yan-Qiu LI ; Lu ZHANG ; Ran AN ; Xiang-Cheng ZHEN ; Jing-Ting MIN ; Zheng-Hong LI
Acta Physiologica Sinica 2025;77(2):241-254
The study aimed to construct the second and third generation chimeric antigen receptor T cells (CAR-T) targeting the c-mesenchymal-epithelial transition factor (c-Met) protein, and observe their killing effect on human serous ovarian cancer cell SKOV-3. The expression of MET gene in ovarian serous cystadenocarcinoma, the correlation between MET gene expression and the abundance of immune cell infiltration, and the effect of MET gene expression on the tissue function of ovarian serous cystadenocarcinoma were analyzed by bioinformatics. The expression of c-Met in ovarian cancer tissues and adjacent tissues was detected by immunohistochemical staining. The second and third generation c-Met CAR-T cells, namely c-Met CAR-T(2G/3G), were prepared by lentivirus infection, and the cell subsets and infection efficiency were detected by flow cytometry. Using CD19 CAR-T and activated T cells as control groups and A2780 cells with c-Met negative expression as Non target groups, the kill efficiency on SKOV-3 cells with c-Met positive expression, cytokine release and cell proliferation of c-Met CAR-T(2G/3G) were explored by lactate dehydrogenase (LDH) release, ELISA and CCK-8 respectively. The results showed that MET gene expression was significantly up-regulated in ovarian cancer tissues compared with normal tissues, which was consistent with the immunohistochemistry results. However, in all pathological stages, there was no obvious difference in MET expression and no correlation between MET gene expression and the race and age of ovarian cancer patients. The second generation and third generation c-Met CAR-T cells were successfully constructed. After lentivirus infection, the proportion of CD8+ T cells in c-Met CAR-T(2G) was upregulated, while there was no significant change in the cell subsets of c-Met CAR-T(3G). The LDH release experiment showed that the kill efficiency of c-Met CAR-T(2G/3G) on SKOV-3 increased with the increase of effect-target ratio. When the effect-target ratio was 20:1, the kill efficiency of c-Met CAR-T(2G) reached (42.02 ± 5.17)% (P < 0.05), and the kill efficiency of c-Met CAR-T(3G) reached (51.40 ± 2.71)% (P < 0.05). ELISA results showed that c-Met CAR-T released more cytokine compared to CD19 CAR-T and activated T cells (P < 0.05). Moreover, the cytokine release of c-Met CAR-T(3G) was higher than c-Met CAR-T(2G) (P < 0.01). The CCK-8 results showed that after 48 h, the cell number of c-Met CAR-T(2G) was higher than that of c-Met CAR-T(3G) (P < 0.01). In conclusion, both the second and third generation c-Met CAR-T can target and kill c-Met-positive SKOV-3 cells, with no significant difference. c-Met CAR-T(2G) has stronger proliferative ability, and c-Met CAR-T(3G) releases more cytokines.
Humans
;
Female
;
Ovarian Neoplasms/immunology*
;
Proto-Oncogene Proteins c-met/metabolism*
;
Receptors, Chimeric Antigen/immunology*
;
Cell Line, Tumor
;
Cystadenocarcinoma, Serous/immunology*
;
T-Lymphocytes/immunology*

Result Analysis
Print
Save
E-mail