1.Upregulation of NR2A in Glutamatergic VTA Neurons Contributes to Chronic Visceral Pain in Male Mice.
Meng-Ge LI ; Shu-Ting QU ; Yang YU ; Zhenhua XU ; Fu-Chao ZHANG ; Yong-Chang LI ; Rong GAO ; Guang-Yin XU
Neuroscience Bulletin 2025;41(12):2113-2126
Chronic visceral pain is a persistent and debilitating condition arising from dysfunction or sensitization of the visceral organs and their associated nervous pathways. Increasing evidence suggests that imbalances in central nervous system function play an essential role in the progression of visceral pain, but the exact mechanisms underlying the neural circuitry and molecular targets remain largely unexplored. In the present study, the ventral tegmental area (VTA) was shown to mediate visceral pain in mice. Visceral pain stimulation increased c-Fos expression and Ca2+ activity of glutamatergic VTA neurons, and optogenetic modulation of glutamatergic VTA neurons altered visceral pain. In particular, the upregulation of NMDA receptor 2A (NR2A) subunits within the VTA resulted in visceral pain in mice. Administration of a selective NR2A inhibitor decreased the number of visceral pain-induced c-Fos positive neurons and attenuated visceral pain. Pharmacology combined with chemogenetics further demonstrated that glutamatergic VTA neurons regulated visceral pain behaviors based on NR2A. In summary, our findings demonstrated that the upregulation of NR2A in glutamatergic VTA neurons plays a critical role in visceral pain. These insights provide a foundation for further comprehension of the neural circuits and molecular targets involved in chronic visceral pain and may pave the way for targeted therapies in chronic visceral pain.
Animals
;
Male
;
Visceral Pain/metabolism*
;
Up-Regulation/physiology*
;
Ventral Tegmental Area/metabolism*
;
Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors*
;
Neurons/drug effects*
;
Mice, Inbred C57BL
;
Mice
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Chronic Pain/metabolism*
;
Glutamic Acid/metabolism*
2.A Case Report of EGFR-TKIs Resistant Secondary MET Gene Amplified Lung Squamous Cell Carcinoma and Literature Review.
Yalan LIU ; Peng CHEN ; Xinfu LIU
Chinese Journal of Lung Cancer 2024;27(11):878-884
With the rapid development of epidermal growth factor receptor (EGFR) gene testing of lung adenocarcinoma patients has been routinely carried out, EGFR mutations are also possible for some small samples of non-smoking female lung squamous cell carcinoma patients. This increases the opportunity for targeted therapy for this group of patients. However, drug resistance in patients with lung squamous cell carcinoma during targeted therapy is an important factor affecting subsequent treatment. There are multiple mechanisms of acquired drug resistance in targeted therapy, and the alteration of mesenchymal-epithelial transition factor (MET) signaling pathway is one of the common mechanisms of drug resistance. At present, some selective tyrosine kinase inhibitors (TKIs) of MET has been approved for non-small cell lung cancer with MET gene 14 exon skipping mutation, such as Glumetinib, Savolitinib, Tepotinib, Capmatinib, etc. Drugs that target secondary MET amplification are still in clinical trials. This paper retrospectively analyzed the clinical data of a female patient with EGFR-TKIs resistant secondary MET amplified squamous cell lung cancer, and reviewed relevant literature to explore how to optimize the treatment of lung squamous cell carcinoma patients with EGFR mutation, so as to provide clinical reference for the diagnosis and treatment of such patients.
.
Female
;
Humans
;
Carcinoma, Squamous Cell/drug therapy*
;
Drug Resistance, Neoplasm/genetics*
;
ErbB Receptors/antagonists & inhibitors*
;
Gene Amplification
;
Lung Neoplasms/drug therapy*
;
Protein Kinase Inhibitors/pharmacology*
;
Proto-Oncogene Proteins c-met/genetics*
3.Qiwei No.3 combined with sildenafil inhibits Rho kinase activity and increases AKT/eNOS expressions in the penile cavernosum of rats with diabetic erectile dysfunction.
Wei ZHAO ; Lin LI ; Li ZHANG ; Xiao-Qing ZHAO ; Dong-Xu LI ; Jing XIA
National Journal of Andrology 2024;30(12):1128-1134
OBJECTIVE:
To explore the effects of Qiwei No.3 combined with sildenafil on Rho kinase activity and AKT/eNOS pathways in the penile cavernous tissue of male rats with diabetic erectile dysfunction (DED).
METHODS:
We constructed a model of DED in 24 SD male rats by intraperitoneal injection of streptozotocin solution and injecting apomorphine into the neck after 8 weeks of feeding, equally randomized the model rats into a model control (MC), a sildenafil (S), a low-dose Qiwei No.3 combined with sildenafil (LQ+S) and a high-dose Qiwei No.3 combined with sildenafil (HQ+S) group, and took another 6 normal male rats as blank controls (BC). We treated intragastrically the animals in the BC and MC groups with normal saline, and those in the S, LQ+S and HQ+S groups with sildenafil (5 mg/kg/d), Qiwei No.3 (10 g/kg/d) + sildenafil (5mg/kg/d), and Qiwei No.3 (20g/kg/d) + sildenafil (5mg/kg/d), respectively. After 6 weeks of treatment, we recorded the number of penile erections of all the rats by injecting apomorphine into the neck, and measured the activity of Rho kinase and expressions of p-AKT and eNOS proteins in the corpus cavernosum by Western blot.
RESULTS:
Compared with the blank controls, all the DED model rats showed evidently elevated blood glucose and reduced body weight. The number of penile erections was significantly increased in the S, LQ+S and HQ+S groups in comparison with that in the model controls (P< 0.05), even higher in the HQ+S than in the S group (P< 0.05). The activity of Rho kinase in the penile cavernosum was significantly higher in the MC than in the BC group (P<0.05), but lower in the HQ+S than in the S group (P< 0.05). No statistically significant difference was observed in the expression level of the p-AKT protein in the penile cavernosum among the five groups of rats (P > 0.05). The expression of eNOS was remarkably up-regulated in the BC and HQ+S groups (P< 0.05) compared with that in the MC group, even more significantly in the HQ+S than in the LQ+S and S groups (P< 0.05).
CONCLUSION
The combination of high-dose "Qiwei No. 3" and sildenafil can improve erectile function in DED rats, which may be attributed to its effect of releasing more nitric oxide (NO) by inhibiting the activity of Rho kinase and up-regulating the expression of the e-NOS protein.
Animals
;
Male
;
Sildenafil Citrate
;
Rats
;
rho-Associated Kinases/antagonists & inhibitors*
;
Rats, Sprague-Dawley
;
Penis/drug effects*
;
Erectile Dysfunction/etiology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Nitric Oxide Synthase Type III/metabolism*
;
Diabetes Mellitus, Experimental/complications*
;
Drugs, Chinese Herbal/therapeutic use*
4.Dexmedetomidine Attenuates High Glucose-induced HK-2 Epithelial-mesenchymal Transition by Inhibiting AKT and ERK.
Qi Zheng PAN ; Kai LI ; Zhuo Dong YANG ; Ming GAO ; Jia Hong SHI ; Shu Ping REN ; Guo Qing ZHAO
Biomedical and Environmental Sciences 2020;33(5):323-330
Objective:
To explore the protective effects of dexmedetomidine (Dex) against high glucose-induced epithelial-mesenchymal transition in HK-2 cells and relevant mechanisms.
Methods:
HK-2 cells were exposed to either glucose or glucose+Dex for 6 h. The production of ROS, morphology of HK-2 cells, and cell cycle were detected. Moreover, the expression of AKT, p-AKT, ERK, p-ERK, PI3K, E-Cadherin, Claudin-1, and α-SMA were determined and compared between HK-2 cells exposed to glucose and those exposed to both glucose and Dex with or without PI3K/AKT pathway inhibitor LY294002 and ERK pathway inhibitor U0126.
Results:
Compared with HK-2 cells exposed to high level of glucose, the HK-2 cells exposed to both high level of glucose and Dex showed: (1) lower level of ROS production; (2) cell morphology was complete; (3) more cells in G1 phase; (4) lower expression of p-AKT, p-ERK and α-SMA, higher expression of E-Cadherin and Claudin-1. PI3K/AKT inhibitor LY294002 and ERK inhibitor U0126 decreased the expression of p-AKT, p-ERK and α-SMA, and increased the expression of E-Cadherin and Claudin-1.
Conclusion
Dex can attenuate high glucose-induced HK-2 epithelial-mesenchymal transition by inhibiting AKT and ERK.
Adrenergic alpha-2 Receptor Agonists
;
pharmacology
;
Cell Line
;
Dexmedetomidine
;
pharmacology
;
Epithelial-Mesenchymal Transition
;
drug effects
;
Glucose
;
metabolism
;
Humans
;
MAP Kinase Signaling System
;
drug effects
;
Proto-Oncogene Proteins c-akt
;
antagonists & inhibitors
;
Signal Transduction
;
drug effects
5.RGFP966 inactivation of the YAP pathway attenuates cardiac dysfunction induced by prolonged hypothermic preservation.
Xiao-He ZHENG ; Lin-Lin WANG ; Ming-Zhi ZHENG ; Jin-Jie ZHONG ; Ying-Ying CHEN ; Yue-Liang SHEN
Journal of Zhejiang University. Science. B 2020;21(9):703-715
Oxidative stress and apoptosis are the key factors that limit the hypothermic preservation time of donor hearts to within 4-6 h. The aim of this study was to investigate whether the histone deacetylase 3 (HDAC3) inhibitor RGFP966 could protect against cardiac injury induced by prolonged hypothermic preservation. Rat hearts were hypothermically preserved in Celsior solution with or without RGFP966 for 12 h followed by 60 min of reperfusion. Hemodynamic parameters during reperfusion were evaluated. The expression and phosphorylation levels of mammalian STE20-like kinase-1 (Mst1) and Yes-associated protein (YAP) were determined by western blotting. Cell apoptosis was measured by the terminal deoxynucleotidyl-transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) method. Addition of RGFP966 in Celsior solution significantly inhibited cardiac dysfunction induced by hypothermic preservation. RGFP966 inhibited the hypothermic preservation-induced increase of the phosphorylated (p)-Mst1/Mst1 and p-YAP/YAP ratios, prevented a reduction in total YAP protein expression, and increased the nuclear YAP protein level. Verteporfin (VP), a small molecular inhibitor of YAP-transcriptional enhanced associate domain (TEAD) interaction, partially abolished the protective effect of RGFP966 on cardiac function, and reduced lactate dehydrogenase activity and malondialdehyde content. RGFP966 increased superoxide dismutase, catalase, and glutathione peroxidase gene and protein expression, which was abolished by VP. RGFP966 inhibited hypothermic preservation-induced overexpression of B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax) and cleaved caspase-3, increased Bcl-2 mRNA and protein expression, and reduced cardiomyocyte apoptosis. The antioxidant and anti-apoptotic effects of RGFP966 were cancelled by VP. The results suggest that supplementation of Celsior solution with RGFP966 attenuated prolonged hypothermic preservation-induced cardiac dysfunction. The mechanism may involve inhibition of oxidative stress and apoptosis via inactivation of the YAP pathway.
Acrylamides/pharmacology*
;
Animals
;
Apoptosis/drug effects*
;
Cryopreservation
;
Disaccharides/pharmacology*
;
Electrolytes/pharmacology*
;
Glutamates/pharmacology*
;
Glutathione/pharmacology*
;
Heart/physiology*
;
Heart Transplantation/methods*
;
Hepatocyte Growth Factor/antagonists & inhibitors*
;
Histidine/pharmacology*
;
Histone Deacetylase Inhibitors/pharmacology*
;
Intracellular Signaling Peptides and Proteins/antagonists & inhibitors*
;
Male
;
Mannitol/pharmacology*
;
Oxidative Stress/drug effects*
;
Phenylenediamines/pharmacology*
;
Proto-Oncogene Proteins/antagonists & inhibitors*
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
YAP-Signaling Proteins
6.Overexpression of autophagy-related gene 3 promotes autophagy and inhibits salinomycin-induced apoptosis in breast cancer MCF-7 cells.
Fang LI ; Guo HUANG ; Ping PENG ; Yao LIU ; Shuanghui LI ; Luogen LIU ; Yunsheng ZHANG
Journal of Southern Medical University 2019;39(2):162-168
OBJECTIVE:
To study the effects of the overexpression of autophagy-related gene 3 (ATG3) on autophagy and salinomycin-induced apoptosis in breast cancer cells and explore the underlying mechanisms.
METHODS:
We used the lentivirus approach to establish a breast cancer cell line with stable overexpression of ATG3. Western blotting, immunofluorescence staining and transmission electron microscopy were used to analyze the effect of ATG3 overexpression on autophagy in breast cancer MCF-7 cells. Using the AKT/mTOR agonists SC79 and MHY1485, we analyzed the effect of AKT/mTOR signal pathway activation on ATG3 overexpression-induced autophagy. Western blotting and flow cytometry were used to analyze the effect of autophagy on apoptosis of the ATG3-overexpressing cells treated with salinomycin and 3-MA (an autophagy inhibitor).
RESULTS:
In ATG3-overexpressing MCF-7 cells, ATG3 overexpression obviously promoted autophagy, inhibited the AKT/mTOR signaling pathway, significantly weakened salinomycin-induced apoptosis ( < 0.01), caused significant reduction of the levels of the pro-apoptotic proteins cleaved-caspase 3 ( < 0.01) and Bax ( < 0.05), and enhanced the expression of the anti-apoptotic protein Bcl-2 ( < 0.05). The inhibition of autophagy obviously weakened the inhibitory effect of ATG3 overexpression on salinomycin-induced apoptosis.
CONCLUSIONS
ATG3 overexpression promotes autophagy possibly by inhibiting the AKT/mTOR signaling pathway to decrease salinomycin-induced apoptosis in MCF-7 cells, suggesting that autophagy induction might be one of the mechanisms of drug resistance in breast cancer cells.
Acetates
;
pharmacology
;
Apoptosis
;
drug effects
;
genetics
;
Autophagy
;
drug effects
;
Autophagy-Related Proteins
;
metabolism
;
Benzopyrans
;
pharmacology
;
Breast Neoplasms
;
metabolism
;
pathology
;
Cell Line, Tumor
;
Cell Proliferation
;
Drug Resistance, Neoplasm
;
Female
;
Gene Expression Regulation
;
Humans
;
MCF-7 Cells
;
Morpholines
;
pharmacology
;
Proto-Oncogene Proteins c-akt
;
antagonists & inhibitors
;
metabolism
;
Pyrans
;
pharmacology
;
TOR Serine-Threonine Kinases
;
antagonists & inhibitors
;
metabolism
;
Triazines
;
pharmacology
;
Ubiquitin-Conjugating Enzymes
;
metabolism
7.Long noncoding RNA LINC00520 prevents the progression of cutaneous squamous cell carcinoma through the inactivation of the PI3K/Akt signaling pathway by downregulating EGFR.
Chinese Medical Journal 2019;132(4):454-465
BACKGROUND:
Long noncoding RNAs (lncRNAs) play pivotal roles in various malignant tumors. Epidermal growth factor receptor (EGFR) signaling is associated with the pathogenesis of cutaneous squamous cell carcinoma (cSCC). This study aimed to explore the role of LINC00520 in the development of cSCC via EGFR and phosphoinositide 3-kinase-protein kinase B (PI3K/Akt) signaling pathways.
METHODS:
A microarray analysis was applied to screen differentially expressed lncRNAs in cSCC samples. The A431 cSCC cell line was transfected and assigned different groups. The expression patterns of LINC00520, EGFR, and intermediates in the PI3K/Akt pathway were characterized using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting analysis. Cell proliferation, migration, and invasion were detected using the MTT assay, scratch test, and Transwell assay, respectively. Cell-based experiments and a tumorigenicity assay were conducted to assess the effect of LINC00520 on cSCC progression. This study was ended in September 2017. Comparisons between two groups were analyzed with t-test and comparisons among multiple groups were analyzed using one-way analysis of variance. The nonparametric Wilcoxon rank sum test was used to analyze skewed data. The enumerated data were analyzed using the chi-square test or Fisher exact test.
RESULTS:
Data from chip GSE66359 revealed depletion of LINC00520 in cSCC. Cells transfected with LINC00520 vector and LINC00520 vector + si-EGFR showed elevated LINC00520 level but decreased levels of the EGFR, PI3K, AKT, VEGF, MMP-2 and MMP-9 mRNAs and proteins, and inhibition of the growth, migration and adhesion of cSCC cells, while the si-LINC00520 group showed opposite trends (all P < 0.05). Compared with the LINC00520 vector group, the LINC00520 vector + si-EGFR group showed decreased levels of the EGFR, PI3K, AKT, VEGF, MMP-2 and MMP-9 mRNAs and proteins, and inhibition of the growth, migration and adhesion of cSCC cells, while the LINC00520 vector + EGFR vector group showed opposite results (all P < 0.05).
CONCLUSION
Based on our results, LINC00520-targeted EGFR inhibition might result in the inactivation of the PI3K/Akt pathway, thus inhibiting cSCC development.
Animals
;
Carcinoma, Squamous Cell
;
pathology
;
prevention & control
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Disease Progression
;
ErbB Receptors
;
antagonists & inhibitors
;
Female
;
Humans
;
Lymphatic Metastasis
;
Mice
;
Neoplasm Invasiveness
;
Phosphatidylinositol 3-Kinases
;
physiology
;
Proto-Oncogene Proteins c-akt
;
physiology
;
RNA, Long Noncoding
;
physiology
;
Signal Transduction
;
physiology
;
Skin Neoplasms
;
pathology
;
prevention & control
8.Akt Inhibitor Perifosine Prevents Epileptogenesis in a Rat Model of Temporal Lobe Epilepsy.
Feng ZHU ; Jiejing KAI ; Linglin CHEN ; Meiling WU ; Jingyin DONG ; Qingmei WANG ; Ling-Hui ZENG
Neuroscience Bulletin 2018;34(2):283-290
Accumulating data have revealed that abnormal activity of the mTOR (mammalian target of rapamycin) pathway plays an important role in epileptogenesis triggered by various factors. We previously reported that pretreatment with perifosine, an inhibitor of Akt (also called protein kinase B), abolishes the rapamycin-induced paradoxical increase of S6 phosphorylation in a rat model induced by kainic acid (KA). Since Akt is an upstream target in the mTOR signaling pathway, we set out to determine whether perifosine has a preventive effect on epileptogenesis. Here, we explored the effect of perifosine on the model of temporal epilepsy induced by KA in rats and found that pretreatment with perifosine had no effect on the severity or duration of the KA-induced status epilepticus. However, perifosine almost completely inhibited the activation of p-Akt and p-S6 both acutely and chronically following the KA-induced status epilepticus. Perifosine pretreatment suppressed the KA-induced neuronal death and mossy fiber sprouting. The frequency of spontaneous seizures was markedly decreased in rats pretreated with perifosine. Accordingly, rats pretreated with perifosine showed mild impairment in cognitive functions. Collectively, this study provides novel evidence in a KA seizure model that perifosine may be a potential drug for use in anti-epileptogenic therapy.
Animals
;
Anticonvulsants
;
pharmacology
;
Brain
;
drug effects
;
pathology
;
Convulsants
;
toxicity
;
Disease Models, Animal
;
Epilepsy, Temporal Lobe
;
chemically induced
;
pathology
;
Kainic Acid
;
toxicity
;
Male
;
Neurons
;
drug effects
;
pathology
;
Phosphorylcholine
;
analogs & derivatives
;
pharmacology
;
Protein Kinase Inhibitors
;
pharmacology
;
Proto-Oncogene Proteins c-akt
;
antagonists & inhibitors
;
Rats
;
Rats, Sprague-Dawley
;
Status Epilepticus
;
chemically induced
;
pathology
9.EGF Induced RET Inhibitor Resistance in CCDC6-RET Lung Cancer Cells.
Hyun CHANG ; Ji Hea SUNG ; Sung Ung MOON ; Han Soo KIM ; Jin Won KIM ; Jong Seok LEE
Yonsei Medical Journal 2017;58(1):9-18
PURPOSE: Rearrangement of the proto-oncogene rearranged during transfection (RET) has been newly identified potential driver mutation in lung adenocarcinoma. Clinically available tyrosine kinase inhibitors (TKIs) target RET kinase activity, which suggests that patients with RET fusion genes may be treatable with a kinase inhibitor. Nevertheless, the mechanisms of resistance to these agents remain largely unknown. Thus, the present study aimed to determine whether epidermal growth factor (EGF) and hepatocyte growth factor (HGF) trigger RET inhibitor resistance in LC-2/ad cells with CCDC6-RET fusion genes. MATERIALS AND METHODS: The effects of EGF and HGF on the susceptibility of a CCDC6-RET lung cancer cell line to RET inhibitors (sunitinib, E7080, vandetanib, and sorafenib) were examined. RESULTS: CCDC6-RET lung cancer cells were highly sensitive to RET inhibitors. EGF activated epidermal growth factor receptor (EGFR) and triggered resistance to sunitinib, E7080, vandetanib, and sorafenib by transducing bypass survival signaling through ERK and AKT. Reversible EGFR-TKI (gefitinib) resensitized cancer cells to RET inhibitors, even in the presence of EGF. Endothelial cells, which are known to produce EGF, decreased the sensitivity of CCDC6-RET lung cancer cells to RET inhibitors, an effect that was inhibited by EGFR small interfering RNA (siRNA), anti-EGFR antibody (cetuximab), and EGFR-TKI (Iressa). HGF had relatively little effect on the sensitivity to RET inhibitors. CONCLUSION: EGF could trigger resistance to RET inhibition in CCDC6-RET lung cancer cells, and endothelial cells may confer resistance to RET inhibitors by EGF. E7080 and other RET inhibitors may provide therapeutic benefits in the treatment of RET-positive lung cancer patients.
Adenocarcinoma/drug therapy/*genetics
;
Cell Line, Tumor
;
Cetuximab/pharmacology
;
Drug Resistance, Neoplasm/drug effects/*genetics
;
Epidermal Growth Factor/metabolism/*pharmacology
;
*Gene Rearrangement
;
Hepatocyte Growth Factor/*pharmacology
;
Humans
;
Indoles/pharmacology
;
Lung Neoplasms/drug therapy/*genetics
;
MAP Kinase Signaling System
;
*Mutation
;
Niacinamide/analogs & derivatives/pharmacology
;
Phenylurea Compounds/pharmacology
;
Piperidines/pharmacology
;
Protein Kinase Inhibitors/therapeutic use
;
Proto-Oncogene Proteins c-ret/*antagonists & inhibitors/genetics
;
Pyrroles/pharmacology
;
Quinazolines/pharmacology
;
RNA, Small Interfering/pharmacology
;
Receptor, Epidermal Growth Factor/genetics/metabolism
;
Signal Transduction/drug effects
;
fms-Like Tyrosine Kinase 3/metabolism
10.Pim-1 Kinase Regulating Dynamics Related Protein 1 Mediates Sevoflurane Postconditioning-induced Cardioprotection.
Jin-Dong LIU ; Hui-Juan CHEN ; Da-Liang WANG ; Hui WANG ; Qian DENG ;
Chinese Medical Journal 2017;130(3):309-317
BACKGROUNDIt is well documented that sevoflurane postconditioning (SP) has a significant myocardial protection effect. However, the mechanisms underlying SP are still unclear. In the present study, we investigated the hypothesis that the Pim-1 kinase played a key role in SP-induced cardioprotection by regulating dynamics-related protein 1 (Drp1).
METHODSA Langendorff model was used in this study. Seventy-two rats were randomly assigned into six groups as follows: CON group, ischemia reperfusion (I/R) group, SP group , SP+proto-oncogene serine/threonine-protein kinase 1 (Pim-1) inhibitor II group, SP+dimethylsufoxide group, and Pim-1 inhibitor II group (n = 12, each). Hemodynamic parameters and infarct size were measured to reflect the extent of myocardial I/R injury. The expressions of Pim-1, B-cell leukemia/lymphoma 2 (Bcl-2) and cytochrome C (Cyt C) in cytoplasm and mitochondria, the Drp1 in mitochondria, and the total Drp1 and p-Drp1ser637 were measured by Western blotting. In addition, transmission electron microscope was used to observe mitochondrial morphology. The experiment began in October 2014 and continued until July 2016.
RESULTSSP improved myocardial I/R injury-induced hemodynamic parametric changes, cardiac function, and preserved mitochondrial phenotype and decreased myocardial infarct size (24.49 ± 1.72% in Sev group compared with 41.98 ± 4.37% in I/R group; P< 0.05). However, Pim-1 inhibitor II significantly (P < 0.05) abolished the protective effect of SP. Western blotting analysis demonstrated that, compared with I/R group, the expression of Pim-1 and Bcl-2 in cytoplasm and mitochondria as well as the total p-Drp1ser637 in Sev group (P < 0.05) were upregulated. Meanwhile, SP inhibited Drp1 compartmentalization to the mitochondria followed by a reduction in the release of Cyt C. Pretreatment with Pim-1 inhibitor II significantly (P < 0.05) abolished SP-induced Pim-1/p-Drp1ser637 signaling activation.
CONCLUSIONSThese findings suggested that SP could attenuate myocardial ischemia-reperfusion injury by increasing the expression of the Pim-1 kinase. Upregulation of Pim-1 might phosphorylate Drp1 and prevent extensive mitochondrial fission through Drp1 cytosolic sequestration.
Animals ; Dynamins ; metabolism ; Hemodynamics ; drug effects ; Ischemic Postconditioning ; methods ; Male ; Methyl Ethers ; therapeutic use ; Mitochondria ; drug effects ; metabolism ; Myocardial Reperfusion Injury ; metabolism ; prevention & control ; Proto-Oncogene Proteins c-pim-1 ; antagonists & inhibitors ; metabolism ; Quinazolinones ; pharmacology ; Rats ; Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail