1.Identification, expression and DNA variation analysis of high affinity nitrate transporter NRT2/3 gene family in Sorghum bicolor.
Shanshan ZHAO ; Zhiqiang GUO ; Lixun ZHU ; Jiali FAN ; Bohui YANG ; Wenting CHAI ; Huiqiong SUN ; Fan FENG ; Yuexiu LIANG ; Chunlei ZOU ; Xiaodong JIANG ; Weijun ZHAO ; Jinhui LÜ ; Chunlai ZHANG
Chinese Journal of Biotechnology 2023;39(7):2743-2761
Nitrate is the main form of inorganic nitrogen that crop absorbs, and nitrate transporter 2 (NRT2) is a high affinity transporter using nitrate as a specific substrate. When the available nitrate is limited, the high affinity transport systems are activated and play an important role in the process of nitrate absorption and transport. Most NRT2 cannot transport nitrates alone and require the assistance of a helper protein belonging to nitrate assimilation related family (NAR2) to complete the absorption or transport of nitrates. Crop nitrogen utilization efficiency is affected by environmental conditions, and there are differences between varieties, so it is of great significance to develop varieties with high nitrogen utilization efficiency. Sorghum bicolor has high stress tolerance and is more efficient in soil nitrogen uptake and utilization. The S. bicolor genome database was scanned to systematically analyze the gene structure, chromosomal localization, physicochemical properties, secondary structure and transmembrane domain, signal peptide and subcellular localization, promoter region cis-acting elements, phylogenetic evolution, single nucleotide polymorphism (SNP) recognition and annotation, and selection pressure of the gene family members. Through bioinformatics analysis, 5 NRT2 gene members (designated as SbNRT2-1a, SbNRT2-1b, SbNRT2-2, SbNRT2-3, and SbNRT2-4) and 2 NAR2 gene members (designated as SbNRT3-1 and SbNRT3-2) were identified, the number of which was less than that of foxtail millet. SbNRT2/3 were distributed on 3 chromosomes, and could be divided into four subfamilies. The genetic structure of the same subfamilies was highly similar. The average value of SbNRT2/3 hydrophilicity was positive, indicating that they were all hydrophobic proteins, whereas α-helix and random coil accounted for more than 70% of the total secondary structure. Subcellular localization occurred on plasma membrane, where SbNRT2 proteins did not contain signal peptides, but SbNRT3 proteins contained signal peptides. Further analysis revealed that the number of transmembrane domains of the SbNRT2s family members was greater than 10, while that of the SbNRT3s were 2. There was a close collinearity between NRT2/3s of S. bicolor and Zea mays. Protein domains analysis showed the presence of MFS_1 and NAR2 protein domains, which supported executing high affinity nitrate transport. Phylogenetic tree analysis showed that SbNRT2/3 were more closely related to those of Z. mays and Setaria italic. Analysis of gene promoter cis-acting elements indicated that the promoter region of SbNRT2/3 had several plant hormones and stress response elements, which might respond to growth and environmental cues. Gene expression heat map showed that SbNRT2-3 and SbNRT3-1 were induced by nitrate in the root and stem, respectively, and SbNRT2-4 and SbNRT2-3 were induced by low nitrogen in the root and stem. Non-synonymous SNP variants were found in SbNRT2-4 and SbNRT2-1a. Selection pressure analysis showed that the SbNRT2/3 were subject to purification and selection during evolution. The expression of SbNRT2/3 gene and the effect of aphid infection were consistent with the expression analysis results of genes in different tissues, and SbNRT2-1b and SbNRT3-1 were significantly expressed in the roots of aphid lines 5-27sug, and the expression levels of SbNRT2-3, SbNRT2-4 and SbNRT3-2 were significantly reduced in sorghum aphid infested leaves. Overall, genome-wide identification, expression and DNA variation analysis of NRT2/3 gene family of Sorghum bicolor provided a basis for elucidating the high efficiency of sorghum in nitrogen utilization.
Nitrate Transporters
;
Nitrates/metabolism*
;
Sorghum/metabolism*
;
Anion Transport Proteins/metabolism*
;
Phylogeny
;
Protein Sorting Signals/genetics*
;
Nitrogen/metabolism*
;
DNA
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
2.The Latest Research Progress of Selinexor in the Treatment of Non-Hodgkin Lymphoma --Review.
Xin-Yu TANG ; Yan WANG ; Rui-Rong XU
Journal of Experimental Hematology 2023;31(1):292-296
Non-Hodgkin lymphoma (NHL) is a common lymphoid hematological malignancy, the treatment and prognosis of NHL have always been the focus of clinical attention. Chemotherapy is the main first-line treatment, but there is still no effective treatment for patients with poor response to chemotherapy, recurrence or progression within a short period of time after treatment, and new and effective drugs need to be developed clinically. As the only clinically validated oral selective inhibitor of nuclear export (SINE), Selinexor has been approved for the treatment of relapsed/refractory diffuse large B-cell lymphoma and multiple myeloma, clinical attempts are being made to apply it to the treatment of other hematological malignancies.This article reviews the anti-tumor mechanism of Selinexor and the latest research progress in its application in NHL, and provides ideas for a more diverse, standardized and effective applications of Selinexor in NHL.
Humans
;
Lymphoma, Non-Hodgkin/drug therapy*
;
Active Transport, Cell Nucleus
;
Hydrazines/pharmacology*
;
Triazoles/therapeutic use*
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
3.Virus hijacking ESCRT system to promote self-replication: a review.
Jun DAI ; Xusheng QIU ; Chan DING
Chinese Journal of Biotechnology 2023;39(10):3948-3965
Endosomal sorting complex required for transport (ESCRT) system drives various cellular processes, including endosome sorting, organelle biogenesis, vesicle transport, maintenance of plasma membrane integrity, membrane fission during cytokinesis, nuclear membrane reformation after mitosis, closure of autophagic vacuoles, and enveloped virus budding. Increasing evidence suggests that the ESCRT system can be hijacked by different family viruses for their proliferation. At different stages of the virus life cycle, viruses can interfere with or exploit ESCRT-mediated physiological processes in various ways to maximize their chance of infecting the host. In addition, many retroviral and RNA viral proteins possess "late domain" motifs, which can recruit host ESCRT subunit proteins to assist in virus endocytosis, transport, replicate, budding and efflux. Therefore, the "late domain" motifs of viruses and ESCRT subunit proteins could serve as promising drug targets in antiviral therapy. This review focuses on the composition and functions of the ESCRT system, the effects of ESCRT subunits and virus "late domain" motifs on viral replication, and the antiviral effects mediated by the ESCRT system, aiming to provide a reference for the development and utilization of antiviral drugs.
Endosomal Sorting Complexes Required for Transport/metabolism*
;
Viruses/metabolism*
;
Protein Transport
;
Virus Replication
;
Endosomes/metabolism*
;
Virus Release
4.Effect of SLC7A11 gene downregulation on the gefitinib resistance of lung adenocarcinoma PC9/GR cells and its mechanism.
Yun Long JIA ; Yan ZHAO ; Shu Man ZHEN ; Zi Shuo CHENG ; Bo Yang ZHENG ; Yue Ping LIU ; Li Hua LIU
Chinese Journal of Oncology 2023;45(9):779-786
Objective: To screen the key genes involved in gefitinib resistance of lung adenocarcinoma PC9/GR cells which harbored 19 exon mutation of epidermal growth factor receptor (EGFR) gene, and discuss the effect and mechanism of downregulation of solute carrier family 7 member 11 (SLC7A11) on the gefitinib resistance of PC9/GR cells. Methods: RNA microarray was conducted to detect the gene expressions in PC9 and PC9/GR cells. The differently expressed genes were screened by using limma package of R language and analyzed by Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Western blotting was performed to determine the expression of SLC7A11 protein in PC9 and PC9/GR cells. PC9/GR cells were infected with lentivirus plasmid containing short hairpin RNA (shRNA) targeting SLC7A11 or negative control shRNA (sh-NC), respectively. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to evaluate the efficacy of shRNA on the expression of SLC7A11 mRNA. Cell counting kit-8 (CCK-8) assay was conducted to determine the suppressing effect of gefitinib on PC9/GR cells. Mito-Tracker Red CMXRos probe and malondialdehyde (MDA) assay kit were used to evaluate gefitinib-induced ferroptosis in PC9/GR cells. Immunohistochemistry (IHC) was conducted to detect the expression of SLC7A11 protein in the tumor tissues of advanced stage lung adenocarcinoma patients harboring 19 exon mutation of EGFR gene. Thirty-six advanced stage lung adenocarcinoma patients who received EGFR-tyrosihe kinase inhibitor(TKI) as first-line treatment in Fourth Hospital of Hebei Medical Unviersity were enrolled. Kaplan-Meier survival curve was drawn to analyze the correlation between SLC7A11 expression and progression-free survival (PFS) of the patients. Results: RNA array demonstrated that 2 888 genes were differently expressed between PC9 and PC9/GR cells. KEGG analysis showed that ferroptosis-related gene was one of the most enriched region of the differently expressed genes between PC9 and PC9/GR cells. These ferroptosis-related gene cohort contained 13 genes, among which SLC7A11 exhibited the most significant difference. Western blotting showed that the expression of SLC7A11 protein in PC9/GR cells was significantly higher than that in PC9 cells (0.76±0.03 vs. 0.19±0.02, P<0.001). The 50% inhibiting concentration (IC(50)) of gefitinib was 35.08 μmol/L and 64.01 μmol/L for sh-SLC7A11 and sh-NC group PC9/GR cells, respectively. PC9/GR cells in sh-SLC7A11 group exhibited significantly lower density of mitochondria fluorescence after gefitinib treatment, compared to the sh-NC group (213.77±26.50 vs. 47.88±4.55, P<0.001). In addition, PC9/GR cells in sh-SLC7A11 group exhibited significantly higher MDA after gefitinib treatment, compared to the sh-NC group [(15.43±1.60) μmol/mg vs. (82.18±7.77) μmol/mg, P<0.001]. The PFS of the patients with low expression of SLC7A11 (n=18) was significantly longer than the patients with high expression of SLC7A11 (n=18, 16.77 months vs. 9.14 months, P<0.001). Conclusion: Downregulation of SLC7A11 could increase the sensitivity of PC9/GR cells to gefitinib by promoting ferroptosis.
Humans
;
Gefitinib/therapeutic use*
;
Antineoplastic Agents/therapeutic use*
;
Lung Neoplasms/pathology*
;
Down-Regulation
;
Quinazolines/therapeutic use*
;
Drug Resistance, Neoplasm/genetics*
;
ErbB Receptors/metabolism*
;
Adenocarcinoma of Lung
;
Protein Kinase Inhibitors/therapeutic use*
;
RNA, Small Interfering/genetics*
;
Cell Line, Tumor
;
Amino Acid Transport System y+/metabolism*
5.Effect of SLC7A11 gene downregulation on the gefitinib resistance of lung adenocarcinoma PC9/GR cells and its mechanism.
Yun Long JIA ; Yan ZHAO ; Shu Man ZHEN ; Zi Shuo CHENG ; Bo Yang ZHENG ; Yue Ping LIU ; Li Hua LIU
Chinese Journal of Oncology 2023;45(9):779-786
Objective: To screen the key genes involved in gefitinib resistance of lung adenocarcinoma PC9/GR cells which harbored 19 exon mutation of epidermal growth factor receptor (EGFR) gene, and discuss the effect and mechanism of downregulation of solute carrier family 7 member 11 (SLC7A11) on the gefitinib resistance of PC9/GR cells. Methods: RNA microarray was conducted to detect the gene expressions in PC9 and PC9/GR cells. The differently expressed genes were screened by using limma package of R language and analyzed by Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Western blotting was performed to determine the expression of SLC7A11 protein in PC9 and PC9/GR cells. PC9/GR cells were infected with lentivirus plasmid containing short hairpin RNA (shRNA) targeting SLC7A11 or negative control shRNA (sh-NC), respectively. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to evaluate the efficacy of shRNA on the expression of SLC7A11 mRNA. Cell counting kit-8 (CCK-8) assay was conducted to determine the suppressing effect of gefitinib on PC9/GR cells. Mito-Tracker Red CMXRos probe and malondialdehyde (MDA) assay kit were used to evaluate gefitinib-induced ferroptosis in PC9/GR cells. Immunohistochemistry (IHC) was conducted to detect the expression of SLC7A11 protein in the tumor tissues of advanced stage lung adenocarcinoma patients harboring 19 exon mutation of EGFR gene. Thirty-six advanced stage lung adenocarcinoma patients who received EGFR-tyrosihe kinase inhibitor(TKI) as first-line treatment in Fourth Hospital of Hebei Medical Unviersity were enrolled. Kaplan-Meier survival curve was drawn to analyze the correlation between SLC7A11 expression and progression-free survival (PFS) of the patients. Results: RNA array demonstrated that 2 888 genes were differently expressed between PC9 and PC9/GR cells. KEGG analysis showed that ferroptosis-related gene was one of the most enriched region of the differently expressed genes between PC9 and PC9/GR cells. These ferroptosis-related gene cohort contained 13 genes, among which SLC7A11 exhibited the most significant difference. Western blotting showed that the expression of SLC7A11 protein in PC9/GR cells was significantly higher than that in PC9 cells (0.76±0.03 vs. 0.19±0.02, P<0.001). The 50% inhibiting concentration (IC(50)) of gefitinib was 35.08 μmol/L and 64.01 μmol/L for sh-SLC7A11 and sh-NC group PC9/GR cells, respectively. PC9/GR cells in sh-SLC7A11 group exhibited significantly lower density of mitochondria fluorescence after gefitinib treatment, compared to the sh-NC group (213.77±26.50 vs. 47.88±4.55, P<0.001). In addition, PC9/GR cells in sh-SLC7A11 group exhibited significantly higher MDA after gefitinib treatment, compared to the sh-NC group [(15.43±1.60) μmol/mg vs. (82.18±7.77) μmol/mg, P<0.001]. The PFS of the patients with low expression of SLC7A11 (n=18) was significantly longer than the patients with high expression of SLC7A11 (n=18, 16.77 months vs. 9.14 months, P<0.001). Conclusion: Downregulation of SLC7A11 could increase the sensitivity of PC9/GR cells to gefitinib by promoting ferroptosis.
Humans
;
Gefitinib/therapeutic use*
;
Antineoplastic Agents/therapeutic use*
;
Lung Neoplasms/pathology*
;
Down-Regulation
;
Quinazolines/therapeutic use*
;
Drug Resistance, Neoplasm/genetics*
;
ErbB Receptors/metabolism*
;
Adenocarcinoma of Lung
;
Protein Kinase Inhibitors/therapeutic use*
;
RNA, Small Interfering/genetics*
;
Cell Line, Tumor
;
Amino Acid Transport System y+/metabolism*
6.Sexual Dimorphism of Inputs to the Lateral Habenula in Mice.
Xue LIU ; Hongren HUANG ; Yulin ZHANG ; Liping WANG ; Feng WANG
Neuroscience Bulletin 2022;38(12):1439-1456
The lateral habenula (LHb), which is a critical neuroanatomical hub and a regulator of midbrain monoaminergic centers, is activated by events resulting in negative valence and contributes to the expression of both appetitive and aversive behaviors. However, whole-brain cell-type-specific monosynaptic inputs to the LHb in both sexes remain incompletely elucidated. In this study, we used viral tracing combined with in situ hybridization targeting vesicular glutamate transporter 2 (vGlut2) and glutamic acid decarboxylase 2 (Gad2) to generate a comprehensive whole-brain atlas of inputs to glutamatergic and γ-aminobutyric acid (GABA)ergic neurons in the LHb. We found >30 ipsilateral and contralateral brain regions that projected to the LHb. Of these, there were significantly more monosynaptic LHb-projecting neurons from the lateral septum, anterior hypothalamus, dorsomedial hypothalamus, and ventromedial hypothalamus in females than in males. More interestingly, we found a stronger GABAergic projection from the medial septum to the LHb in males than in females. Our results reveal a comprehensive connectivity atlas of glutamatergic and GABAergic inputs to the LHb in both sexes, which may facilitate a better understanding of sexual dimorphism in physiological and pathological brain functions.
Animals
;
Male
;
Mice
;
Glutamic Acid/metabolism*
;
Habenula/metabolism*
;
Hypothalamus/metabolism*
;
Neural Pathways/physiology*
;
Sex Characteristics
;
Vesicular Glutamate Transport Protein 2/metabolism*
;
Female
7.BMP4 preserves the developmental potential of mESCs through Ube2s- and Chmp4b-mediated chromosomal stability safeguarding.
Mingzhu WANG ; Kun ZHAO ; Meng LIU ; Mengting WANG ; Zhibin QIAO ; Shanru YI ; Yonghua JIANG ; Xiaochen KOU ; Yanhong ZHAO ; Jiqing YIN ; Tianming LI ; Hong WANG ; Cizhong JIANG ; Shaorong GAO ; Jiayu CHEN
Protein & Cell 2022;13(8):580-601
Chemically defined medium is widely used for culturing mouse embryonic stem cells (mESCs), in which N2B27 works as a substitution for serum, and GSK3β and MEK inhibitors (2i) help to promote ground-state pluripotency. However, recent studies suggested that MEKi might cause irreversible defects that compromise the developmental potential of mESCs. Here, we demonstrated the deficient bone morphogenetic protein (BMP) signal in the chemically defined condition is one of the main causes for the impaired pluripotency. Mechanistically, activating the BMP signal pathway by BMP4 could safeguard the chromosomal integrity and proliferation capacity of mESCs through regulating downstream targets Ube2s and Chmp4b. More importantly, BMP4 promotes a distinct in vivo developmental potential and a long-term pluripotency preservation. Besides, the pluripotent improvements driven by BMP4 are superior to those by attenuating MEK suppression. Taken together, our study shows appropriate activation of BMP signal is essential for regulating functional pluripotency and reveals that BMP4 should be applied in the serum-free culture system.
Animals
;
Bone Morphogenetic Protein 4/metabolism*
;
Cell Differentiation
;
Chromosomal Instability
;
Endosomal Sorting Complexes Required for Transport
;
Mice
;
Mitogen-Activated Protein Kinase Kinases/metabolism*
;
Mouse Embryonic Stem Cells/cytology*
;
Pluripotent Stem Cells/cytology*
;
Signal Transduction
;
Ubiquitin-Conjugating Enzymes
8.Analysis of SLC25A13 gene variants in 16 infants with intrahepatic cholestasis caused by citrin protein deficiency.
Wenwen LIU ; Xin MA ; Meijuan WANG ; Huijuan NING ; Xuemei ZHONG
Chinese Journal of Medical Genetics 2022;39(2):139-142
OBJECTIVE:
To explore the characteristics of SLC25A13 gene variants in 16 infants with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD).
METHODS:
The infants were subjected to high-throughput DNA sequencing for coding exons and flanking regions of the target genes. Suspected variants were verified by Sanger sequencing and bioinformatic analysis.
RESULTS:
Among the 16 NICCD cases, 15 were found to harbor pathogenic variants. Among these, IVS14-9A>G, c.1640G>A, c.762T>A, c.736delG, c.1098Tdel and c.851G>A were previously unreported.
CONCLUSION
Six novel SLC25A13 variants were found by high-throughput sequencing, which has enriched the spectrum of SLC25A13 gene variants and provided a basis for genetic counseling and prenatal diagnosis.
Calcium-Binding Proteins/genetics*
;
Cholestasis, Intrahepatic/genetics*
;
Citrullinemia/genetics*
;
Humans
;
Infant
;
Infant, Newborn
;
Mitochondrial Membrane Transport Proteins/genetics*
;
Mutation
;
Organic Anion Transporters/genetics*
;
Protein Deficiency
9.Research progress of Rab proteins in neurodegenerative diseases.
Yun LI ; Xue WANG ; Jun-Xia XIE ; Ning SONG
Acta Physiologica Sinica 2021;73(2):315-328
As a member of the Ras superfamily, Rab proteins are small GTP-binding proteins. In the process of endocytosis of macromolecules and substances delivery between organelles, Rab proteins act on vesicle formation, transport, tethering and fusion by recruiting their effectors, therefore being key regulatory factors in vesicle trafficking. Disturbance of localizations and functions of Rab proteins and their effectors are involved in the pathogenesis of several diseases. This review focuses on the main functions of Rab proteins and their possible roles in the onset and progression of neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, and Huntington's disease.
Cell Movement
;
Endocytosis
;
Humans
;
Neurodegenerative Diseases
;
Protein Transport
;
rab GTP-Binding Proteins/metabolism*
10.Analysis of PKD2 gene variant and protein localization in a pedigree affected with polycystic kidney disease.
Jianping CHENG ; Ping LI ; Yujun LI ; Yong'an ZHOU ; Ruirui REN ; Yaxin HAN ; Xingxing LI ; Zhe LI ; Yuan BAI
Chinese Journal of Medical Genetics 2021;38(1):47-51
OBJECTIVE:
To detect the mutation site in a pedigree affected with autosomal dominant polycystic kidney disease (ADPKD) and verify its impact on the protein function.
METHODS:
Peripheral blood samples were collected from the proband and his pedigree members for the extraction of genomic DNA. Mutational analysis was performed on the proband through whole-exome sequencing. Suspected variant was verified by Sanger sequencing. A series of molecular methods including PCR amplification, restriction enzyme digestion, ligation and transformation were also used to construct wild-type and mutant eukaryotic expression vectors of the PKD2 gene, which were transfected into HEK293T and HeLa cells for the observation of protein expression and cell localization.
RESULTS:
The proband was found to harbor a c.2051dupA (p. Tyr684Ter) frame shift mutation of the PKD2 gene, which caused repeat of the 2051st nucleotide of its cDNA sequence and a truncated protein. Immunofluorescence experiment showed that the localization of the mutant protein within the cell was altered compared with the wild-type, which may be due to deletion of the C-terminus of the PKD2 gene.
CONCLUSION
The c.2051dupA (p. Tyr684Ter) mutation of the PKD2 gene probably underlay the pathogenesis of ADPKD in this pedigree.
DNA Mutational Analysis
;
Female
;
Frameshift Mutation
;
HEK293 Cells
;
HeLa Cells
;
Humans
;
Male
;
Pedigree
;
Polycystic Kidney, Autosomal Dominant/physiopathology*
;
Protein Kinases/genetics*
;
Protein Transport/genetics*
;
Whole Exome Sequencing

Result Analysis
Print
Save
E-mail