1.Reduction in RNF125-mediated RIG-I ubiquitination and degradation promotes renal inflammation and fibrosis progression.
Lu-Xin LI ; Ting-Ting JI ; Li LU ; Xiao-Ying LI ; Li-Min LU ; Shou-Jun BAI
Acta Physiologica Sinica 2025;77(3):385-394
Persistent inflammation plays a pivotal role in the initiation and progression of renal fibrosis. Activation of the pattern recognition receptor retinoic acid-inducible gene-I (RIG-I) is implicated in the initiation of inflammation. This study aimed to investigate the upstream mechanisms that regulates the activation of RIG-I and its downstream signaling pathway. Eight-week-old male C57BL/6 mice were used to establish unilateral ureteral obstruction (UUO)-induced renal fibrosis model, and the renal tissue samples were collected 14 days later for analysis. Transforming growth factor-β (TGF-β)-treated mouse renal tubular epithelial cells were used in in vitro studies. The results demonstrated that, compared to the control group, UUO kidney exhibited significant fibrosis, which was accompanied by the increases of RIG-I, p-NF-κB p65 and inflammatory cytokines, such as TNF-α and IL-1β. Additionally, the protein level of the E3 ubiquitin ligase RNF125 was significantly downregulated and predominantly localized in the renal tubular epithelial cells. Similarly, the treatment of tubular cells with TGF-β induced the increases in RIG-I, p-NF-κB p65 and inflammatory cytokines while decreasing RNF125. Co-immunoprecipitation (Co-IP) assays confirmed that RNF125 was able to interact with RIG-I. Overexpression of RNF125 promoted the ubiquitination of RIG-I, and accelerated its degradation via the ubiquitin-proteasome pathway. Overexpression of RNF125 in UUO kidneys and in vitro tubular cells effectively mitigated the inflammatory response and renal fibrosis. In summary, our results demonstrated that the decrease in RNF125 under pathological conditions led to reduction in RIG-I ubiquitination and degradation, activation of the downstream NF-κB signaling pathway and increase in inflammatory cytokine production, which promoted the progression of renal fibrosis.
Animals
;
Fibrosis
;
Male
;
Ubiquitination
;
Mice
;
Mice, Inbred C57BL
;
DEAD Box Protein 58
;
Ubiquitin-Protein Ligases/physiology*
;
Inflammation/metabolism*
;
Ureteral Obstruction/complications*
;
Kidney/pathology*
;
Signal Transduction
;
Transforming Growth Factor beta/pharmacology*
2.Advances in the role of protein post-translational modifications in circadian rhythm regulation.
Zi-Di ZHAO ; Qi-Miao HU ; Zi-Yi YANG ; Peng-Cheng SUN ; Bo-Wen JING ; Rong-Xi MAN ; Yuan XU ; Ru-Yu YAN ; Si-Yao QU ; Jian-Fei PEI
Acta Physiologica Sinica 2025;77(4):605-626
The circadian clock plays a critical role in regulating various physiological processes, including gene expression, metabolic regulation, immune response, and the sleep-wake cycle in living organisms. Post-translational modifications (PTMs) are crucial regulatory mechanisms to maintain the precise oscillation of the circadian clock. By modulating the stability, activity, cell localization and protein-protein interactions of core clock proteins, PTMs enable these proteins to respond dynamically to environmental and intracellular changes, thereby sustaining the periodic oscillations of the circadian clock. Different types of PTMs exert their effects through distincting molecular mechanisms, collectively ensuring the proper function of the circadian system. This review systematically summarized several major types of PTMs, including phosphorylation, acetylation, ubiquitination, SUMOylation and oxidative modification, and overviewed their roles in regulating the core clock proteins and the associated pathways, with the goals of providing a theoretical foundation for the deeper understanding of clock mechanisms and the treatment of diseases associated with circadian disruption.
Protein Processing, Post-Translational/physiology*
;
Circadian Rhythm/physiology*
;
Humans
;
Animals
;
CLOCK Proteins/physiology*
;
Circadian Clocks/physiology*
;
Phosphorylation
;
Acetylation
;
Ubiquitination
;
Sumoylation
3.Prediction of protein Kbhb sites based on learnable feature embedding.
Zhisen WEI ; Zhiwei WANG ; Jinyao YU ; Cheng DENG ; Dongjun YU
Journal of Biomedical Engineering 2025;42(5):1029-1035
Protein lysine β-hydroxybutyrylation (Kbhb) is a newly discovered post-translational modification associated with a wide range of biological processes. Identifying Kbhb sites is critical for a better understanding of its mechanism of action. However, biochemical experimental methods for probing Kbhb sites are costly and have a long cycle. Therefore, a feature embedding learning method based on the Transformer encoder was proposed to predict Kbhb sites. In this method, amino acid residues were mapped into numerical vectors according to their amino acid class and position in a learnable feature embedding method. Then the Transformer encoder was used to extract discriminating features, and the bidirectional long short-term memory network (BiLSTM) was used to capture the correlation between different features. In this paper, a benchmark dataset was constructed, and a Kbhb site predictor, AutoTF-Kbhb, was implemented based on the proposed method. Experimental results showed that the proposed feature embedding learning method could extract effective features. AutoTF-Kbhb achieved an area under curve (AUC) of 0.87 and a Matthews correlation coefficient (MCC) of 0.37 on the independent test set, significantly outperforming other methods in comparison. Therefore, AutoTF-Kbhb can be used as an auxiliary means to identify Kbhb sites.
Protein Processing, Post-Translational
;
Lysine/chemistry*
;
Proteins/chemistry*
;
Machine Learning
;
Algorithms
4.Exploring the mechanism of lncRNA-BC200 in regulating neuronal injury repair based on controlling BACE1 ubiquitination.
Lijun LIU ; Jie DU ; Huan LIU ; Yuan WANG ; Jing ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):125-133
Objective To explore the mechanism of lncRNA-BC200 (BC200) targeting the ubiquitination of Beta-site APP cleaving enzyme 1 (BACE1) and regulating the repair of nerve cell injury. Methods Mouse hippocampal neuron cell line HT22 was divided into four groups: control group, oxygen-glucose deprivation/reoxygenation(OGD/R) group, OGD/R+si-NC group and OGD/R+si-BC200 group. In order to further explore the relationship between BC200 and BACE1, HT22 cells were divided into four groups: OGD/R group, OGD/R+si-BC200 group, OGD/R+si-BC200+NC group and OGD/R+si-BC200+ BACE1 group. Twenty male C57BL/6J mice were randomly assigned to the following four groups: control group, middle cerebral artery occlusion (MCAO) group, MCAO+si-BC200 group and MCAO+si-BC200+BACE1 group. The mRNA expression levels of BC200 and BACE1 in cells were measured by real-time quantitative reverse transcription polymerase chain reaction. The expressions of c-caspase-3, B-cell lymphoma 2 (Bcl2), Bcl2 associated X protein(BAX) and BACE1 were detected by western blot, and the apoptotic cells were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) test. Results Compared with the control group, the activity of HT22 cells in OGD/R group decreased significantly, and the percentage of apoptotic cells increased significantly. Compared with OGD/R+si-NC group, the activity of HT22 cells in OGD/R+si-BC200 group increased significantly, and the percentage of apoptotic cells decreased significantly. Compared with the control group, the expression of BACE1 protein in HT22 cells in OGD/R group was significantly enhanced. Compared with OGD/R+si-NC group, the expression of BACE1 protein in HT22 cells in OGD/R+si-BC200 group decreased significantly. It was observed that after OGD/R treatment, the ubiquitination level of BACE1 decreased significantly and the expression of BACE1 protein increased significantly. After transfection with si-BC200, the ubiquitination level of BACE1 protein increased significantly, while the expression of BACE1 protein decreased significantly. Compared with OGD/R+si-BC200+NC group, the percentage of apoptotic cells, the expression of c-caspase-3 and Bax protein in HT22 cells in OGD/R+si-BC200+BACE1 group increased significantly, and the expression of Bcl2 protein decreased significantly. Compared with the control group, the number of cerebral infarction areas and TUNEL positive cells in MCAO group increased significantly, and the survival number of neurons decreased significantly. Compared with the MCAO group, the number of cerebral infarction areas and TUNEL positive cells in MCAO+si-BC200 group decreased significantly, and the survival number of neurons increased significantly, while the addition of BACE1 reversed the improvement of si-BC200 transfection. Conclusion The combination of BC200 and BACE1 inhibit the ubiquitination of BACE1, and participate in mediating the expression enhancement of BACE1 induced by OGD/R. Specific blocking of BC200/BACE1 axis may be a potential therapeutic target to protect neurons from apoptosis induced by cerebral ischemia/reperfusion.
Animals
;
Amyloid Precursor Protein Secretases/genetics*
;
RNA, Long Noncoding/physiology*
;
Aspartic Acid Endopeptidases/genetics*
;
Male
;
Neurons/pathology*
;
Mice
;
Mice, Inbred C57BL
;
Apoptosis/genetics*
;
Ubiquitination
;
Cell Line
;
Hippocampus/metabolism*
;
bcl-2-Associated X Protein/genetics*
;
Caspase 3/genetics*
;
Infarction, Middle Cerebral Artery/metabolism*
5.Ubiquitin-specific peptidase 21 promotes M2 polarization of endometriotic macrophages by increasing FOXM1 stability.
Min DONG ; Min XU ; Derong FANG ; Yiyuan CHEN ; Mingzhe ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):603-610
Objective To explore the mechanism of ubiquitin specific peptidase 21 (USP21) increasing the stability of forkhead box protein M1 (FOXM1) and promoting M2 polarization of macrophages in endometriosis (EM). Methods Eutopic endometrial stromal cells (EESC) collected from patients and normal endometrial stromal cells (NESC) from routine health examiners were cultured in vitro, and the expression levels of USP21 and FOXM1 were detected using RT-qPCR and Western blot. EESCs were co-cultured with macrophages. M1 polarization markers of interleukin 6 (IL-6) and CXC chemokine ligand 10 (CXCL10) and M2 polarization markers of CD206 and fibronectin 1 (FN1) were tested using RT-qPCR. M2 marker CD206 was further detected by flow cytometry. IL-6, tumor necrosis factor-alpha (TNF-α), IL-10, and transforming growth factor-beta (TGF-β) levels in cell supernatant were detected by ELISA. Co-immunoprecipitation was used to assess the interaction between USP21 and FOXM1, and the ubiquitination level of FOXM1. FOXM1 protein stability was detected through cycloheximide (CHX) assay. Results USP21 and FOXM1 expression levels in the EESC group were significantly increased compared with those in the NESC group; compared with the NESC + M0 group, the EESC + M0 group showed no significant difference in the expression of M1 polarization markers (IL-6 and CXCL10), but increased expression of M2 polarization markers (CD206 and FN1), along with notably increased number of M2 macrophages; there was no significant difference in IL-6 and TNF-α levels, but increased levels of IL-10 and TGF-β in the cell supernatant. The above findings indicated that the deubiquitinase USP21 was highly expressed in EM, promoting M2 polarization of macrophages. Knocking down USP21 or FOXM1 can inhibit M2 polarization of EM macrophages. USP21 interacted with FOXM1 in EESC, leading to a decrease in FOXM1 ubiquitination level and an increase in FOXM1 protein stability. Overexpression of FOXM1 reversed the inhibitory effect of knocking down USP21 on M2 polarization of EM macrophages. Conclusion The deubiquitinase USP21 interacts with FOXM1 to increase the stability of FOXM1 and promote M2 polarization of EM macrophages.
Humans
;
Forkhead Box Protein M1/genetics*
;
Female
;
Macrophages/cytology*
;
Endometriosis/genetics*
;
Ubiquitin Thiolesterase/genetics*
;
Cells, Cultured
;
Endometrium/metabolism*
;
Ubiquitination
;
Adult
;
Interleukin-10/metabolism*
;
Interleukin-6/metabolism*
;
Protein Stability
;
Stromal Cells/metabolism*
6.13-Docosenamide Enhances Oligodendrocyte Precursor Cell Differentiation via USP33-Mediated Deubiquitination of CNR1 in Chronic Cerebral Hypoperfusion.
Yuhao XU ; Yi TAN ; Zhi ZHANG ; Duo CHEN ; Chao ZHOU ; Liang SUN ; Shengnan XIA ; Xinyu BAO ; Haiyan YANG ; Yun XU
Neuroscience Bulletin 2025;41(11):1939-1956
Chronic cerebral hypoperfusion leads to white matter injury (WMI), which plays a significant role in contributing to vascular cognitive impairment. While 13-docosenamide is a type of fatty acid amide, it remains unclear whether it has therapeutic effects on chronic cerebral hypoperfusion. In this study, we conducted bilateral common carotid artery stenosis (BCAS) surgery to simulate chronic cerebral hypoperfusion-induced WMI and cognitive impairment. Our findings showed that 13-docosenamide alleviates WMI and cognitive impairment in BCAS mice. Mechanistically, 13-docosenamide specifically binds to cannabinoid receptor 1 (CNR1) in oligodendrocyte precursor cells (OPCs). This interaction results in an upregulation of ubiquitin-specific peptidase 33 (USP33)-mediated CNR1 deubiquitination, subsequently increasing CNR1 protein expression, activating the phosphorylation of the AKT/mTOR pathway, and promoting the differentiation of OPCs. In conclusion, our study suggests that 13-docosenamide can ameliorate chronic cerebral hypoperfusion-induced WMI and cognitive impairment by enhancing OPC differentiation and could serve as a potential therapeutic drug.
Animals
;
Oligodendrocyte Precursor Cells/metabolism*
;
Mice
;
Cell Differentiation/drug effects*
;
Male
;
Receptor, Cannabinoid, CB1/metabolism*
;
Mice, Inbred C57BL
;
Ubiquitin Thiolesterase/metabolism*
;
Ubiquitination/drug effects*
;
Carotid Stenosis/complications*
;
Cognitive Dysfunction/drug therapy*
7.USP47 Regulates Excitatory Synaptic Plasticity and Modulates Seizures in Murine Models by Blocking Ubiquitinated AMPAR Degradation.
Juan YANG ; Haiqing ZHANG ; You WANG ; Yuemei LUO ; Weijin ZHENG ; Yong LIU ; Qian JIANG ; Jing DENG ; Qiankun LIU ; Peng ZHANG ; Hao HUANG ; Changyin YU ; Zucai XU ; Yangmei CHEN
Neuroscience Bulletin 2025;41(10):1805-1823
Epilepsy is a chronic neurological disorder affecting ~65 million individuals worldwide. Abnormal synaptic plasticity is one of the most important pathological features of this condition. We investigated how ubiquitin-specific peptidase 47 (USP47) influences synaptic plasticity and its link to epilepsy. We found that USP47 enhanced excitatory postsynaptic transmission and increased the density of total dendritic spines and the proportion of mature dendritic spines. Furthermore, USP47 inhibited the degradation of the ubiquitinated α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit glutamate receptor 1 (GluR1), which is associated with synaptic plasticity. In addition, elevated levels of USP47 were found in epileptic mice, and USP47 knockdown reduced the frequency and duration of seizure-like events and alleviated epileptic seizures. To summarize, we present a new mechanism whereby USP47 regulates excitatory postsynaptic plasticity through the inhibition of ubiquitinated GluR1 degradation. Modulating USP47 may offer a potential approach for controlling seizures and modifying disease progression in future therapeutic strategies.
Animals
;
Receptors, AMPA/metabolism*
;
Neuronal Plasticity/physiology*
;
Seizures/physiopathology*
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Mice
;
Ubiquitin Thiolesterase/genetics*
;
Male
;
Excitatory Postsynaptic Potentials/physiology*
;
Ubiquitination
;
Dendritic Spines/metabolism*
;
Hippocampus/metabolism*
8.Downregulation of Neuralized1 in the Hippocampal CA1 Through Reducing CPEB3 Ubiquitination Mediates Synaptic Plasticity Impairment and Cognitive Deficits in Neuropathic Pain.
Yan GAO ; Yiming QIAO ; Xueli WANG ; Manyi ZHU ; Lili YU ; Haozhuang YUAN ; Liren LI ; Nengwei HU ; Ji-Tian XU
Neuroscience Bulletin 2025;41(12):2233-2253
Neuropathic pain is frequently comorbidity with cognitive deficits. Neuralized1 (Neurl1)-mediated ubiquitination of CPEB3 in the hippocampus is critical in learning and memory. However, the role of Neurl1 in the cognitive impairment in neuropathic pain remains elusive. Herein, we found that lumbar 5 spinal nerve ligation (SNL) in male rat-induced neuropathic pain was followed by learning and memory deficits and LTP impairment in the hippocampus. The Neurl1 expression in the hippocampal CA1 was decreased after SNL. And this decrease paralleled the reduction of ubiquitinated-CPEB3 level and reduced production of GluA1 and GluA2. Overexpression of Neurl1 in the CA1 rescued cognitive deficits and LTP impairment, and reversed the reduction of ubiquitinated-CPEB3 level and the decrease of GluA1 and GluA2 production following SNL. Specific knockdown of Neurl1 or CPEB3 in bilateral hippocampal CA1 in naïve rats resulted in cognitive deficits and impairment of synaptic plasticity. The rescued cognitive function and synaptic plasticity by the treatment of overexpression of Neurl1 before SNL were counteracted by the knockdown of CPEB3 in the CA1. Collectively, the above results suggest that the downregulation of Neurl1 through reducing CPEB3 ubiquitination and, in turn, repressing GluA1 and GluA2 production and mediating synaptic plasticity impairment in hippocampal CA1 leads to the genesis of cognitive deficits in neuropathic pain.
Animals
;
Male
;
Neuralgia/metabolism*
;
Rats
;
Down-Regulation/physiology*
;
Ubiquitination/physiology*
;
Neuronal Plasticity/physiology*
;
Rats, Sprague-Dawley
;
CA1 Region, Hippocampal/metabolism*
;
Cognitive Dysfunction/metabolism*
;
RNA-Binding Proteins/metabolism*
;
Receptors, AMPA/metabolism*
9.PDHX acetylation facilitates tumor progression by disrupting PDC assembly and activating lactylation-mediated gene expression.
Zetan JIANG ; Nanchi XIONG ; Ronghui YAN ; Shi-Ting LI ; Haiying LIU ; Qiankun MAO ; Yuchen SUN ; Shengqi SHEN ; Ling YE ; Ping GAO ; Pinggen ZHANG ; Weidong JIA ; Huafeng ZHANG
Protein & Cell 2025;16(1):49-63
Deactivation of the mitochondrial pyruvate dehydrogenase complex (PDC) is important for the metabolic switching of cancer cell from oxidative phosphorylation to aerobic glycolysis. Studies examining PDC activity regulation have mainly focused on the phosphorylation of pyruvate dehydrogenase (E1), leaving other post-translational modifications largely unexplored. Here, we demonstrate that the acetylation of Lys 488 of pyruvate dehydrogenase complex component X (PDHX) commonly occurs in hepatocellular carcinoma, disrupting PDC assembly and contributing to lactate-driven epigenetic control of gene expression. PDHX, an E3-binding protein in the PDC, is acetylated by the p300 at Lys 488, impeding the interaction between PDHX and dihydrolipoyl transacetylase (E2), thereby disrupting PDC assembly to inhibit its activation. PDC disruption results in the conversion of most glucose to lactate, contributing to the aerobic glycolysis and H3K56 lactylation-mediated gene expression, facilitating tumor progression. These findings highlight a previously unrecognized role of PDHX acetylation in regulating PDC assembly and activity, linking PDHX Lys 488 acetylation and histone lactylation during hepatocellular carcinoma progression and providing a potential biomarker and therapeutic target for further development.
Humans
;
Acetylation
;
Carcinoma, Hepatocellular/genetics*
;
Liver Neoplasms/genetics*
;
Pyruvate Dehydrogenase Complex/genetics*
;
Gene Expression Regulation, Neoplastic
;
Animals
;
Mice
;
Cell Line, Tumor
;
Protein Processing, Post-Translational
;
Histones/metabolism*
;
Disease Progression
10.TRIM4 modulates the ubiquitin-mediated degradation of hnRNPDL and weakens sensitivity to CDK4/6 inhibitor in ovarian cancer.
Xiaoxia CHE ; Xin GUAN ; Yiyin RUAN ; Lifei SHEN ; Yuhong SHEN ; Hua LIU ; Chongying ZHU ; Tianyu ZHOU ; Yiwei WANG ; Weiwei FENG
Frontiers of Medicine 2025;19(1):121-133
Ovarian cancer is the most lethal malignancy affecting the female reproductive system. Pharmacological inhibitors targeting CDK4/6 have demonstrated promising efficacy across various cancer types. However, their clinical benefits in ovarian cancer patients fall short of expectations, with only a subset of patients experiencing these advantageous effects. This study aims to provide further clinical and biological evidence for antineoplastic effects of a CDK4/6 inhibitor (TQB4616) in ovarian cancer and explore underlying mechanisms involved. Patient-derived ovarian cancer organoid models were established to evaluate the effectiveness of TQB3616. Potential key genes related to TQB3616 sensitivity were identified through RNA-seq analysis, and TRIM4 was selected as a candidate gene for further investigation. Subsequently, co-immunoprecipitation and GST pull-down assays confirmed that TRIM4 binds to hnRNPDL and promotes its ubiquitination through RING and B-box domains. RIP assay demonstrated that hnRNPDL binded to CDKN2C isoform 2 and suppressed its expression by alternative splicing. Finally, in vivo studies confirmed that the addition of siTRIM4 significantly improved the effectiveness of TQB3616. Overall, our findings suggest that TRIM4 modulates ubiquitin-mediated degradation of hnRNPDL and weakens sensitivity to CDK4/6 inhibitors in ovarian cancer treatment. TRIM4 may serve as a valuable biomarker for predicting sensitivity to CDK4/6 inhibitors in ovarian cancer.
Humans
;
Female
;
Ovarian Neoplasms/pathology*
;
Animals
;
Tripartite Motif Proteins/genetics*
;
Mice
;
Cyclin-Dependent Kinase 4/antagonists & inhibitors*
;
Cell Line, Tumor
;
Cyclin-Dependent Kinase 6/antagonists & inhibitors*
;
Protein Kinase Inhibitors/pharmacology*
;
Ubiquitin/metabolism*
;
Xenograft Model Antitumor Assays
;
Ubiquitination
;
Antineoplastic Agents/pharmacology*

Result Analysis
Print
Save
E-mail