1.Clinical characteristics of epilepsy with intellectual disability associated with SETD1B gene in three pediatric cases and a literature review.
Ying LI ; Zou PAN ; Zhuo ZHENG ; Sa-Ying ZHU ; Qiang GONG ; Fei YIN ; Jing PENG ; Chen CHEN
Chinese Journal of Contemporary Pediatrics 2025;27(5):574-579
OBJECTIVES:
To summarize the clinical and genetic characteristics of epilepsy with intellectual disability caused by SETD1B gene variants in children.
METHODS:
A retrospective analysis was conducted on the clinical data of three children with SETD1B gene variants diagnosed and treated at the Department of Pediatric Neurology of Xiangya Hospital of Central South University. Relevant literature was reviewed to summarize the clinical characteristics of this condition.
RESULTS:
All three children presented with symptoms during infancy or early childhood, including mild intellectual disability and myoclonic seizures, with two cases exhibiting eyelid myoclonia. After treatment with three or more antiepileptic drugs, two cases achieved seizure control or partial control, while one case remained refractory. Each of the three children was found to have a heterozygous variant in the SETD1B gene (one deletion, one frameshift, and one missense variant). To date, 54 cases with SETD1B gene variants have been reported, involving a total of 56 variants, predominantly missense variants (64%, 36/56). The main clinical manifestations included varying degrees of developmental delay (96%, 52/54) and seizures (81%, 44/54). Among the 44 patients with seizures, myoclonic (20%, 9/44) and absence seizures (34%, 15/44) were common, with eyelid myoclonia reported in six cases. Approximately one-fifth of these patients had poorly controlled seizures.
CONCLUSIONS
The primary phenotypes associated with SETD1B gene variants are intellectual disability and seizures, and seizures exhibit distinct characteristics. Eyelid myoclonia is not uncommon.
Humans
;
Intellectual Disability/complications*
;
Epilepsy/complications*
;
Male
;
Female
;
Histone-Lysine N-Methyltransferase/genetics*
;
Child, Preschool
;
Child
;
Retrospective Studies
2.NSD1 regulates H3K36me2 in the pathogenesis of non-obstructive azoospermia.
Xuan ZHUANG ; Zhen-Xin CAI ; Yu-Feng YANG ; Zhi-Ming LI
National Journal of Andrology 2025;31(3):195-201
OBJECTIVE:
To explore the role of nuclear receptor-binding SET-domain protein 1 (NSD1) in the pathogenesis of nonobstructive azoospermia (NOA) by regulating the expressions of relevant genes.
METHODS:
We detected the expression of NSD1 in the testis tissue of 7 male patients with obstructive azoospermia (OA) and 18 with NOA by qPCR and immunofluorescence assay, and determined the modification level of H3K36me2 in the testes of two groups of patients by immunofluorescence staining, Western blot and immunoprecipitation (IP). We examined the difference in the enrichment of H3K36me2 in the testis tissue by chromatin IP-based sequencing (ChIP-Seq), analyzed the genomic distribution and target genes using bioinformatics, and verified the expression levels of the target genes in the testes of the two groups of patients by qPCR.
RESULTS:
Compared with the patients with OA, those with NOA showed dramatically decreased mRNA and protein expressions of NSD1 (P=0.000 8). The binding of NSD1 to H3K36me2 was observed in the testis tissue of both the two groups of patients, while the modification level of H3K36me2 was evidently reduced in the NOA males. H3K36me2 was distributed mainly in the intergenic region in the testes of the two groups of patients, but the enrichment of H3K36me2 was obviously decreased in the NOA group. The differentially H3K36me2-enriched genes were involved in various biological processes, including tissue development, and cell morphogenesis. Results of ChIP-Seq and qPCR showed significantly down-regulated expressions of the target genes KIT, SPO11 and ACRV1 in the testis tissue of the NOA males compared with those in the OA patients (P<0.01).
CONCLUSION
The levels of NSD1 and H3K36me2 are decreased in testis tissue of the NOA patient, H3K36me2 is highly enriched in the spermatogenesis-related key genes KIT, SPO11 and ACRV1, and the down-regulated expression of NSD1 impairs spermatogenesis.
Humans
;
Male
;
Azoospermia/genetics*
;
Testis/metabolism*
;
Histone-Lysine N-Methyltransferase/metabolism*
;
Histones/metabolism*
3.METTL3-mediated m6A modification promotes FOXO3 expression and anthracycline resistance in acute myeloid leukemia cells through autophagy regulation.
Xiawei ZHANG ; Jingjing YANG ; Yanan WEN ; Qingyang LIU ; Liping DOU ; Chunji GAO
Journal of Southern Medical University 2025;45(3):470-478
OBJECTIVES:
To investigate the role of METTL3 and FOXO3 in anthracycline resistance in acute myeloid leukemia (AML) cells.
METHODS:
Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and transcriptome sequencing (RNA-seq) were performed in anthracycline-resistant and sensitive HL60 and K562 cells with lentivirus-mediated knockdown or overexpression of METTL3 and FOXO3. TCGA and GSE6891 datasets were used for analysis of the clinical and gene expression data of AMI patients. FOXO3 expressions at the mRNA and protein levels in the transfected cells were detected with RT-qPCR and Western blotting, and the changes in cell proliferation and apoptosis were evaluated using CCK8 assay and flow cytometry; the expression of m6A-modified mRNA and mRNA stability of FOXO3 was detected analyzed using MeRIP-qPCR and RT-qPCR. Functional enrichment analysis of the differential genes in the transfected cells was performed.
RESULTS:
Differential gene analysis in anthracycline-resistant versus sensitive AML cells and in cells with METTL3 knockdown revealed the enrichment in FoxO and autophagy pathways (P<0.05), and the anthracycline-resistant cells showed significantly increased m6A modification of FOXO3. FOXO3 expression was positively correlated with METTL3 expression. METTL3 knockdown significantly reduced FOXO3 mRNA stability and its protein levels in anthracycline-resistant AML cells, which exhibited higher m6A-modified FOXO3 expression levels than their sensitive counterparts. Database analysis, Kaplan-Meier analysis and RT-qPCR results suggested that a high FOXO3 expression was associated with a poor prognosis of AML patients. In anthracycline-resistant AML cells expressing higher FOXO3 levels than the sensitive cells, lentivirus-mediated overexpression of FOXO3 significantly enhanced cell proliferation and suppressed cell apoptosis. Inhibiting autophagy using an autophagy inhibitor (Baf.A1) obviously enhanced the inhibitory effect of adriamycin on resistant AMI cells and cells overexpressing FOXO3.
CONCLUSIONS
METTL3 promotes FOXO3 expression via m6A modification, and FOXO3-driven autophagy contributes to anthracycline resistance in AML cells by enhancing cell proliferation and suppressing cell apoptosis.
Humans
;
Forkhead Box Protein O3/genetics*
;
Leukemia, Myeloid, Acute/genetics*
;
Drug Resistance, Neoplasm
;
Methyltransferases/genetics*
;
Autophagy
;
Anthracyclines/pharmacology*
;
HL-60 Cells
;
Apoptosis
;
Cell Proliferation
;
K562 Cells
4.NUP62 alleviates senescence and promotes the stemness of human dental pulp stem cells via NSD2-dependent epigenetic reprogramming.
Xiping WANG ; Li WANG ; Linxi ZHOU ; Lu CHEN ; Jiayi SHI ; Jing GE ; Sha TIAN ; Zihan YANG ; Yuqiong ZHOU ; Qihao YU ; Jiacheng JIN ; Chen DING ; Yihuai PAN ; Duohong ZOU
International Journal of Oral Science 2025;17(1):34-34
Stem cells play a crucial role in maintaining tissue regenerative capacity and homeostasis. However, mechanisms associated with stem cell senescence require further investigation. In this study, we conducted a proteomic analysis of human dental pulp stem cells (HDPSCs) obtained from individuals of various ages. Our findings showed that the expression of NUP62 was decreased in aged HDPSCs. We discovered that NUP62 alleviated senescence-associated phenotypes and enhanced differentiation potential both in vitro and in vivo. Conversely, the knocking down of NUP62 expression aggravated the senescence-associated phenotypes and impaired the proliferation and migration capacity of HDPSCs. Through RNA-sequence and decoding the epigenomic landscapes remodeled induced by NUP62 overexpression, we found that NUP62 helps alleviate senescence in HDPSCs by enhancing the nuclear transport of the transcription factor E2F1. This, in turn, stimulates the transcription of the epigenetic enzyme NSD2. Finally, the overexpression of NUP62 influences the H3K36me2 and H3K36me3 modifications of anti-aging genes (HMGA1, HMGA2, and SIRT6). Our results demonstrated that NUP62 regulates the fate of HDPSCs via NSD2-dependent epigenetic reprogramming.
Humans
;
Dental Pulp/cytology*
;
Nuclear Pore Complex Proteins/genetics*
;
Cellular Senescence/genetics*
;
Stem Cells/metabolism*
;
Epigenesis, Genetic
;
Cell Proliferation
;
Cell Differentiation
;
Histone-Lysine N-Methyltransferase/metabolism*
;
Cells, Cultured
;
Cellular Reprogramming
;
Cell Movement
;
Proteomics
5.Setd2 overexpression rescues bivalent gene expression during SCNT-mediated ZGA.
Xiaolei ZHANG ; Ruimin XU ; Yuyan ZHAO ; Yijia YANG ; Qi SHI ; Hong WANG ; Xiaoyu LIU ; Shaorong GAO ; Chong LI
Protein & Cell 2025;16(6):439-457
Successful cloning through somatic cell nuclear transfer (SCNT) faces significant challenges due to epigenetic obstacles. Recent studies have highlighted the roles of H3K4me3 and H3K27me3 as potential contributors to these obstacles. However, the underlying mechanisms remain largely unclear. In this study, we generated genome-wide maps of H3K4me3 and H3K27me3 in mouse pre-implantation NT embryos. Our analysis revealed that aberrantly over-represented broad H3K4me3 domain and H3K27me3 signal lead to increased bivalent marks at gene promoters in NT embryos compared with naturally fertilized (NF) embryos at the 2-cell stage, which may link to relatively low levels of H3K36me3 in NT 2-cell embryos. Notably, the overexpression of Setd2, a H3K36me3 methyltransferase, successfully restored multiple epigenetic marks, including H3K36me3, H3K4me3, and H3K27me3. In addition, it reinstated the expression levels of ZGA-related genes by reestablishing H3K36me3 at gene body regions, which excluded H3K27me3 from bivalent promoters, ultimately improving cloning efficiency. These findings highlight the excessive bivalent state at gene promoters as a potent barrier and emphasize the removal of these barriers as a promising approach for achieving higher cloning efficiency.
Animals
;
Mice
;
Histone-Lysine N-Methyltransferase/biosynthesis*
;
Histones/genetics*
;
Nuclear Transfer Techniques
;
Female
;
Gene Expression Regulation, Developmental
;
Promoter Regions, Genetic
;
Epigenesis, Genetic
;
Embryo, Mammalian/metabolism*
6.CHAF1B promotes the progression of lung squamous-cell carcinoma by inhibiting SETD7 expression.
Zhuo ZHENG ; Yongfang LIN ; Hua GUO ; Zheng LIU ; Xiaoliang JIE ; Guizhen WANG ; Guangbiao ZHOU
Frontiers of Medicine 2025;19(2):318-328
The p60 subunit of the chromatin assembly factor-1 complex, that is, chromatin assembly factor-1 subunit B (CHAF1B), is a histone H3/H4 chaperone crucial for the transcriptional regulation of cell differentiation and self-renewal. CHAF1B is overexpressed in several cancers and may represent a potential target for cancer therapy. However, its expression and clinical significance in lung squamous-cell carcinoma (LUSC) remain unclear. In this study, we performed weighted gene correlation network analysis to analyze the Gene Expression Omnibus GSE68793 LUSC dataset and identified CHAF1B as one of the most important driver gene candidates. Immunohistochemical analysis of 126 LUSC tumor samples and 80 adjacent normal lung tissues showed the marked upregulation of CHAF1B in tumor tissues and the negative association of its expression level with patient survival outcomes. Silencing of CHAF1B suppressed LUSC proliferation in vitro and LUSC tumor growth in vivo. Furthermore, bulk RNA sequencing of CHAF1B knockdown cells indicated SET domain containing 7 (SETD7) as a significant CHAF1B target gene. In addition, CHAF1B competitively binds to the SETD7 promoter region and represses its transcription. Altogether, these results imply that CHAF1B plays a vital role in LUSC tumorigenesis and may represent a potential molecular target for this deadly disease.
Humans
;
Lung Neoplasms/metabolism*
;
Histone-Lysine N-Methyltransferase/metabolism*
;
Carcinoma, Squamous Cell/metabolism*
;
Gene Expression Regulation, Neoplastic
;
Disease Progression
;
Cell Proliferation/genetics*
;
Cell Line, Tumor
;
Chromatin Assembly Factor-1/metabolism*
;
Animals
;
Mice
;
Male
;
Female
7.Multidrug resistance reversal effect of tenacissoside I through impeding EGFR methylation mediated by PRMT1 inhibition.
Donghui LIU ; Qian WANG ; Ruixue ZHANG ; Ruixin SU ; Jiaxin ZHANG ; Shanshan LIU ; Huiying LI ; Zhesheng CHEN ; Yan ZHANG ; Dexin KONG ; Yuling QIU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(9):1092-1103
Cancer multidrug resistance (MDR) impairs the therapeutic efficacy of various chemotherapeutics. Novel approaches, particularly the development of MDR reversal agents, are critically needed to address this challenge. This study demonstrates that tenacissoside I (TI), a compound isolated from Marsdenia tenacissima (Roxb.) Wight et Arn, traditionally used in clinical practice as an ethnic medicine for cancer treatment, exhibits significant MDR reversal effects in ABCB1-mediated MDR cancer cells. TI reversed the resistance of SW620/AD300 and KBV200 cells to doxorubicin (DOX) and paclitaxel (PAC) by downregulating ABCB1 expression and reducing ABCB1 drug transport function. Mechanistically, protein arginine methyltransferase 1 (PRMT1), whose expression correlates with poor prognosis and shows positive association with both ABCB1 and EGFR expressions in tumor tissues, was differentially expressed in TI-treated SW620/AD300 cells. SW620/AD300 and KBV200 cells exhibited elevated levels of EGFR asymmetric dimethylarginine (aDMA) and enhanced PRMT1-EGFR interaction compared to their parental cells. Moreover, TI-induced PRMT1 downregulation impaired PRMT1-mediated aDMA of EGFR, PRMT1-EGFR interaction, and EGFR downstream signaling in SW620/AD300 and KBV200 cells. These effects were significantly reversed by PRMT1 overexpression. Additionally, TI demonstrated resistance reversal to PAC in xenograft models without detectable toxicities. This study establishes TI's MDR reversal effect in ABCB1-mediated MDR human cancer cells through inhibition of PRMT1-mediated aDMA of EGFR, suggesting TI's potential as an MDR modulator for improving chemotherapy outcomes.
Humans
;
Protein-Arginine N-Methyltransferases/antagonists & inhibitors*
;
Drug Resistance, Neoplasm/drug effects*
;
ErbB Receptors/genetics*
;
Animals
;
Cell Line, Tumor
;
Drug Resistance, Multiple/drug effects*
;
Methylation/drug effects*
;
Saponins/administration & dosage*
;
Mice
;
Mice, Nude
;
Mice, Inbred BALB C
;
ATP Binding Cassette Transporter, Subfamily B/genetics*
;
Doxorubicin/pharmacology*
;
Paclitaxel/pharmacology*
;
Female
;
Repressor Proteins
8.m6A modification regulates PLK1 expression and mitosis.
Xiaoli CHANG ; Xin YAN ; Zhenyu YANG ; Shuwen CHENG ; Xiaofeng ZHU ; Zhantong TANG ; Wenxia TIAN ; Yujun ZHAO ; Yongbo PAN ; Shan GAO
Chinese Journal of Biotechnology 2025;41(4):1559-1572
N6-methyladenosine (m6A) modification plays a critical role in cell cycle regulation, while the mechanism of m6A in regulating mitosis remains underexplored. Here, we found that the total m6A modification level in cells increased during mitosis by the liquid chromatography-mass spectrometry/mass spectrometry and m6A dot blot assays. Silencing methyltransferase-like 3 (METTL3) or METTL14 results in delayed mitosis, abnormal spindle assembly, and chromosome segregation defects by the immunofluorescence. By analyzing transcriptome-wide m6A targets in HeLa cells, we identified polo-like kinase 1 (PLK1) as a key gene modified by m6A in regulating mitosis. Specifically, through immunoblotting and RNA pulldown, m6A modification inhibits PLK1 translation via YTH N6-methyladenosine RNA binding protein 1, thus mediating cell cycle homeostasis. Demethylation of PLK1 mRNA leads to significant mitotic abnormalities. These findings highlight the critical role of m6A in regulating mitosis and the potential of m6A as a therapeutic target in proliferative diseases such as cancer.
Humans
;
Polo-Like Kinase 1
;
Cell Cycle Proteins/metabolism*
;
Proto-Oncogene Proteins/metabolism*
;
Protein Serine-Threonine Kinases/metabolism*
;
Mitosis/physiology*
;
HeLa Cells
;
Adenosine/genetics*
;
Methyltransferases/metabolism*
;
RNA, Messenger/metabolism*
;
RNA-Binding Proteins/metabolism*
9.N-terminal domain of Rep encoded by beet severe curly top virus mediates suppression of RNA silencing and induces VIM5 expression.
Jingyu XU ; Jianxin LU ; Zhenyu YU ; Meijie HU ; Chengkai GUO ; Zhongqi QIU ; Zhongqi CHEN
Chinese Journal of Biotechnology 2025;41(10):3956-3968
Geminiviruses cause substantial crop yield losses worldwide. The replication initiator protein (Rep) encoded by geminiviruses is indispensable for geminiviral replication. The Rep protein encoded by beet severe curly top virus (BSCTV, genus Curtovirus, family Geminiviridae) induces VARIANT IN METHYLATION 5 (VIM5) expression in Arabidopsis leaves upon BSCTV infection. VIM5 functions as a ubiquitination-related E3 ligase to promote the proteasomal degradation of methyltransferases, resulting in reduction of methylation levels in the BSCTV C2-3 promoter. However, the specific domains of Rep responsible for VIM5 induction remain poorly characterized. Although Rep proteins from several geminiviruses act as viral suppressors of RNA silencing (VSRs), whether BSCTV Rep also possesses VSR activity remains to be illustrated. In this study, we employed a transient expression system in the 16c-GFP transgenic and the wild-type Nicotiana benthamiana plants to analyze the VSR and the VIM5-inducing activities of different truncated Rep proteins haboring distinct domains. We found that the N-terminal domain (amino acids 1-180) of Rep suppressed GFP silencing in 16c-GFP transgenic N. benthamiana leaves. The minimal N-terminal fragment (amino acids 1-104) induced VIM5 expression upon co-infiltration, while C-terminal truncations lacked VIM5-inducing activity. Our results indicate that the N-terminal domain of Rep encoded by BSCTV mediates the suppression of RNA silencing and induces VIM5 expression. Thus, our findings contribute to a better understanding of interactions between geminiviral Rep and plant hosts.
Geminiviridae/genetics*
;
Nicotiana/metabolism*
;
Arabidopsis/metabolism*
;
RNA Interference
;
Viral Proteins/metabolism*
;
Arabidopsis Proteins/metabolism*
;
Plants, Genetically Modified/metabolism*
;
Protein Domains
;
Plant Diseases/virology*
;
Methyltransferases/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*
;
DNA Helicases/genetics*

Result Analysis
Print
Save
E-mail