1.Progress of Immunotherapy in EGFR-mutated Advanced Non-small Cell Lung Cancer.
Chinese Journal of Lung Cancer 2024;26(12):934-942
Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are currently the first-line standard of care for patients with non-small cell lung cancer (NSCLC) that harbor EGFR mutations. Nevertheless, resistance to EGFR-TKIs is inevitable. In recent years, although immune checkpoint inhibitors (ICIs) have significantly shifted the treatment paradigm in advanced NSCLC without driver mutation, clinical benefits of these agents are limited in patients with EGFR-mutated NSCLC. Compared with wild-type tumors, tumors with EGFR mutations show more heterogeneity in the expression level of programmed cell death ligand 1 (PD-L1), tumor mutational burden (TMB), and other tumor microenvironment (TME) characteristics. Whether ICIs are suitable for NSCLC patients with EGFR mutations is still worth exploring. In this review, we summarized the clinical data with regard to the efficacy of ICIs in patients with EGFR-mutated NSCLC and deciphered the unique TME in EGFR-mutated NSCLC.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Lung Neoplasms/genetics*
;
ErbB Receptors/metabolism*
;
Immunotherapy
;
Mutation
;
B7-H1 Antigen/genetics*
;
Protein Kinase Inhibitors/pharmacology*
;
Tumor Microenvironment
2.Research Advance of BCR-ABL Mutation and the Efficacy of Second and Third Generation TKI in Chronic Myeloid Leukemia--Review.
Journal of Experimental Hematology 2023;31(2):585-588
The treatment of chronic myeloid leukemia (CML) was revolutionized with the advent of the first-generation tyrosine kinase inhibitors (TKIs), but drug resistance developed during treatment, leading to the development of the second-generation (dasatinib, nilotinib, and bosutinib) and third-generation (ponatinib) TKI. Compared with previous treatment regimens, specific TKI can significantly improve the response rate, overall survival rate and prognosis of CML. Only a few patients with BCR-ABL mutation are insensitive to the second-generation TKIs, so it is suggested to select the second-generation TKIs for patients with specific mutations. For patients with other mutations and without mutations, the second-generation TKI should be selected according to the patient's medical history, while the third-generation TKIs should be selected for mutations that are insensitive to the second-generation TKIs, such as T315I mutation that is sensitive to ponatinib. Due to different BCR-ABL mutations in patients with different sensitivity to the second and third-generation TKIs, this paper will review the latest research progress of the efficacy of the second and third-generation TKIs in CML patients with BCR-ABL mutations.
Humans
;
Antineoplastic Agents/pharmacology*
;
Dasatinib/pharmacology*
;
Drug Resistance, Neoplasm/genetics*
;
Fusion Proteins, bcr-abl/genetics*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*
;
Mutation
;
Protein Kinase Inhibitors/therapeutic use*
3.Advances in Diagnosis and Treatment of HER2-positive Non-small Cell Lung Cancer.
Chenyi REN ; He CAO ; Jing ZHENG ; Wenjia SUN ; Jianya ZHOU
Chinese Journal of Lung Cancer 2023;26(4):291-302
Lung cancer is the most common malignancy in the world and the leading cause of cancer death. Human epidermal growth factor receptor 2 (HER2) positive non-small cell lung cancer (NSCLC) refers to the NSCLC caused by mutation, amplification or overexpression of the HER2 gene, resulting in its dysfunction. HER2 is the most active receptor in the HER family and can combine with other members to form dimers, which can activate multiple signaling pathways and regulate cell proliferation, differentiation, migration and apoptosis. In NSCLC, HER2 positivity is usually considered a poor prognostic marker. At present, the diagnosis and treatment of HER2-positive NSCLC are not mature. Immunohistochemistry (IHC), next generation sequencing (NGS) and other technologies are often used to detect the positive status of HER2 mutation, amplification or overexpression. In previous studies, antitumor drugs did not show ideal therapeutic effects in HER2-positive NSCLC. However, in recent years, related researches have shown that antibody-drug conjugates (ADCs) and new tyrosine kinase inhibitors (TKIs) in targeted therapy show good antitumor activity against HER2 positive NSCLC. This article summarized the progress in diagnosis and treatment of HER2-positive NSCLC, so as to provide reference for subsequent researches.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Lung Neoplasms/genetics*
;
Receptor, ErbB-2/genetics*
;
Mutation
;
Antineoplastic Agents/pharmacology*
;
Signal Transduction
;
Protein Kinase Inhibitors/therapeutic use*
4.Ceritinib as First-line Treatment for Advanced Lung Adenocarcinoma with COX7A2L-ALK Fusion: A Case Report and Literature Review.
Jiao YUAN ; Ruili PAN ; Wei ZHONG ; Mengzhao WANG
Chinese Journal of Lung Cancer 2023;26(4):319-324
Lung cancer is the most common in incidence and mortality worldwide. With the development of next generation sequencing (NGS) detection technology, more and more patients with rare anaplastic lymphoma kinase (ALK) fusion mutations were detected. A case of advanced lung adenocarcinoma with rare COX7A2L-ALK (C2:A20) fusion detected by NGS was reported in Peking Union Medical College Hospital, and all cases with rare ALK fusion mutations were searched from medical datebase from January 1, 2014 to March 31, 2021, to investigate the treatment of rare ALK fusion mutations with ALK inhibitors. The best response of the patient was assessed as partial response (PR) with Ceritinib treatment. By literature review, 22 cases of rare ALK fusion were reported in 19 articles. Combined with this case, 23 cases were analyzed. The objective response rate (ORR) was 82.6% (19/23) and disease control rate (DCR) was 95.7% (22/23) for rare ALK fusions patients treated with ALK inhibitors. Lung adenocarcinoma patients with rare ALK fusion could benefit from ALK inhibitors.
.
Humans
;
Anaplastic Lymphoma Kinase/genetics*
;
Lung Neoplasms/diagnosis*
;
Crizotinib
;
Adenocarcinoma of Lung/genetics*
;
Protein Kinase Inhibitors/pharmacology*
;
Oncogene Proteins, Fusion/genetics*
5.Research status and prospect of immunotherapy in gastrointestinal stromal tumors.
Chinese Journal of Gastrointestinal Surgery 2023;26(1):102-106
Tyrosine kinase inhibitors (TKI) significantly reduce the risk of recurrence and metastasis and prolong survival in patients with gastrointestinal stromal tumors (GIST), but drug resistance is often inevitable. Immunotherapy has been proven effective in multiple solid tumors, but the efficacy in GIST is unclear. The efficacy of immunotherapy depends on the tumor microenvironment (TME). Tumor-infiltrating immune cells and immune checkpoints are important components of TME, which not only participate in the regulation of tumor immune response but are also the key target of immunotherapy. A comprehensive analysis of them can clarify the mechanism of tumor immune escape. This review found that there are abundant tumor-infiltrating immune cells in GIST, which play an important role in tumor immune surveillance and escape. Although early clinical studies have shown that patients with GIST have a good tolerance to immunotherapy, the curative effect is not satisfactory. Therefore, how to select the responders of immunotherapy and coordinate the relationship between immunotherapy and TKIs is the key issue to be explored. At the same time, the gradual deepening of basic research and large sample prospective clinical trials will certainly provide more strategies for the application of immunotherapy in GIST.
Humans
;
Gastrointestinal Stromal Tumors/drug therapy*
;
Prospective Studies
;
Immunotherapy/methods*
;
Tumor Microenvironment
;
Protein Kinase Inhibitors/pharmacology*
6.Potential unreliability of ALK variant allele frequency in the efficacy prediction of targeted therapy in NSCLC.
Wei RAO ; Yutao LIU ; Yan LI ; Lei GUO ; Tian QIU ; Lin DONG ; Jianming YING ; Weihua LI
Frontiers of Medicine 2023;17(3):493-502
Anaplastic lymphoma kinase (ALK) is the most common fusion gene involved in non-small cell lung cancer (NSCLC), and remarkable response has been achieved with the use of ALK tyrosine kinase inhibitors (ALK-TKIs). However, the clinical efficacy is highly variable. Pre-existing intratumoral heterogeneity (ITH) has been proven to contribute to the poor treatment response and the resistance to targeted therapies. In this work, we investigated whether the variant allele frequencies (VAFs) of ALK fusions can help assess ITH and predict targeted therapy efficacy. Through the application of next-generation sequencing (NGS), 7.2% (326/4548) of patients were detected to be ALK positive. On the basis of the adjusted VAF (adjVAF, VAF normalization for tumor purity) of four different threshold values (adjVAF < 50%, 40%, 30%, or 20%), the association of ALK subclonality with crizotinib efficacy was assessed. Nonetheless, no statistical association was observed between median progression-free survival (PFS) and ALK subclonality assessed by adjVAF, and a poor correlation of adjVAF with PFS was found among the 85 patients who received first-line crizotinib. Results suggest that the ALK VAF determined by hybrid capture-based NGS is probably unreliable for ITH assessment and targeted therapy efficacy prediction in NSCLC.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Anaplastic Lymphoma Kinase/therapeutic use*
;
Crizotinib/therapeutic use*
;
Lung Neoplasms/pathology*
;
Protein Kinase Inhibitors/pharmacology*
;
Gene Frequency
7.Epidermal growth factor receptor compound and concomitant mutations: advances in precision treatment strategies.
Wenqian LI ; Rilan BAI ; Hanfei GUO ; Jiuwei CUI
Chinese Medical Journal 2023;136(23):2776-2786
Epidermal growth factor receptor ( EGFR ) mutations are common oncogenic driver mutations in patients with non-small cell lung cancer (NSCLC). The application of EGFR-tyrosine kinase inhibitors (TKIs) is beneficial for patients with advanced and early-stage NSCLC. With the development of next-generation sequencing technology, numerous patients have been found to have more than one genetic mutation in addition to a single EGFR mutation; however, the efficacy of conventional EGFR-TKIs and the optimal treatments for such patients remain largely unknown. Thus, we review the incidence, prognosis, and current treatment regimens of EGFR compound mutations and EGFR concomitant mutations to provide treatment recommendations and guidance for patients with these mutations.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Lung Neoplasms/genetics*
;
Protein Kinase Inhibitors/pharmacology*
;
Mutation/genetics*
;
ErbB Receptors
8.Recent Advance of Newly Therapy for Chronic Myeloid Leukemia with BCR-ABLT315I Mutation--Review.
Hu-Rong LAI ; Qian-Miao WU ; Ya-Zhi YANG ; Jian LI
Journal of Experimental Hematology 2023;31(5):1579-1583
BCR-ABLT315I mutation is the main mechanism of resistance to the first and second generation tyrosine kinase inhibitor (TKI) for patients with chronic myeloid leukemia (CML). Ponatinib as the third generation TKI has been found that can significantly improve the prognosis of CML patients with T315I mutation. However, the latest report has discovered that the T315I compound mutant is even resistant to ponatinib, which aroused the enthusiasm of research on the mechanism of CML resistance and targeted therapy once again. Previous studies have shown that TKI combined with other targeted drugs is effective to CML patients with drug resistance or relapse due to T315I mutation. The latest research has found that the allosteric inhibitor asciminib combined with TKI therapy is equally effective to CML patients with T315I compound mutant, but the specific mechanism is not yet clarified. This review will focus on the latest research progress of therapy for CML with BCR-ABLT315I mutation, hoping to provide reference for researching new drugs and improve therapy for treating CML with T315I mutation.
Humans
;
Drug Resistance, Neoplasm/genetics*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics*
;
Fusion Proteins, bcr-abl/genetics*
;
Protein Kinase Inhibitors/therapeutic use*
;
Mutation
;
Antineoplastic Agents/pharmacology*
9.A Case of Advanced Lung Squamous Cell Carcinoma with CLIP1-ALK Fusion Gene.
Yue YUAN ; Zheng WANG ; Xin NIE ; Ping ZHANG ; Lin LI
Chinese Journal of Lung Cancer 2022;25(9):696-700
Anaplastic lymphoma kinase (ALK) fusion gene is an important tumor driver gene of non-small cell lung cancer, accounting for about 5% of patients with non-small cell lung cancer, of which 97% are patients with lung adenocarcinoma. Since the first discovery of echinoderm microtubule associated protein-like 4 (EML4)-ALK fusion in patients with lung adenocarcinoma in 2007, a variety of ALK fusion partners have been detected. CLIP1-ALK fusion gene was detected by next generation sequencing (NGS) in this patient with advanced lung squamous cell carcinoma, and Alectinib and Ensartinib were taken orally on May 5, 2021. Aletinib was effective for this patient but the patients died on September 30, 2021. This is a report of lung squamous cell carcinoma patients with CLIP1-ALK fusion gene treated with ALK inhibitors.
.
Adenocarcinoma of Lung
;
Anaplastic Lymphoma Kinase/genetics*
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Carcinoma, Squamous Cell/genetics*
;
Humans
;
Lung/pathology*
;
Lung Neoplasms/pathology*
;
Microtubule-Associated Proteins/genetics*
;
Oncogene Proteins, Fusion/genetics*
;
Protein Kinase Inhibitors/pharmacology*
;
Receptor Protein-Tyrosine Kinases/genetics*
10.STE029 Overcomes EGFR-TKI Resistance in Human Lung Adenocarcinoma.
Lin HUANG ; Mei HOU ; Jiewei LIU ; Yang LI ; Wang SHEN ; Qinghua ZHOU
Chinese Journal of Lung Cancer 2022;25(11):771-781
BACKGROUND:
Acquired and primary resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is still the bottleneck of clinical treatment of advanced non-small cell lung cancer (NSCLC). STE029 is a novel anticancer drug which consists of 3-hydroxy-3-methylglutarylcoenzyme A reductase (HMGCR) inhibitor and novel cancer cell membrane targeting molecular. This study aimed to investigate the reversal mechanism of EGFR-TKI resistance by STE029 in lung adenocarcinoma.
METHODS:
CCK8 test was used to test the cell viability and survival rate of EGFR mutated PC9 cell (Gefitinib sensitive), PC9/BB4 cell (acquired Gefitinib resistant), and EGFR wild type A549 cell after treatment of STE029, Gefitinib or combination of both. EdU test was applied to detect changes in cell cycle and Hoechst 33258 was applied to detect apoptosis rate in overcoming the EGFR-TKI resistance. The activity of EGFR/PI3K/Akt, cell cycle and apoptosis signal pathways were examined. In vivo, nude mice were exposed to STE029, Gefitinib and STE029+Gefitinib for 5 wk. And the the tumor volume was measured and tumor weight was obtained on the last day.
RESULTS:
(1) PC9 cells was highly sensitive to Gefitinib, while PC9/BB4 and A549 cell showed significant resistance to Gefitinib treatment; (2) STE029+Gefitinib treatment could significantly decrease the 50% inhibitory concentrarion (IC₅₀) of Gefitinib in PC9, PC9/BB4 and A549 cells (P<0.05, respectively); (3) In PC9 and PC9/BB4 cells, STE029+Gefitinib can block cell cycle and inhibit cell proliferation (P<0.001), while there was no significant difference in apoptosis rate among three drug intervention groups (P>0.05); However, apoptosis rate was increased in STE029+Gefitinib group in A549 cell (P<0.01), while no significance detected in cell proliferation (P>0.05). (4) In PC9 and PC9/BB4 cells, the combination of STE029 and Gefitinib could downregulate p-EGFR, p-Akt, p-Cyclin D1 and Cyclin D1 (P<0.001), and upregulate the expression of GSK-3β (P<0.001), and the expression of cleaved caspase-8, caspase-8 cleaved caspase-9, caspase-9 showed no difference among groups (P>0.05). In A549 cells, the combination of STE029 and Gefitinib could downregulate p-Akt (P<0.001) and upregulate cleaved caspase-8 and cleaved caspase-9 (P<0.001); (5)In vivo, the combination of STE029 and Gefitinib effectively inhibited tumor development and progression compared to STE029 alone or Gefitinib alone, with significant difference (P<0.05) in PC9 and PC9/BB4 xenografted tumor.
CONCLUSIONS
STE029 could sensitize Gefitinib by inhibiting EGFR/PI3K/Akt pathway, blocking the tumor cell cycle and proliferation and inducing apoptosis through caspase-8 and caspase-9 dependent pathway. STE029 deserves further investigations in overcoming EGFR-TKI resistance in lung cancer.
Animals
;
Mice
;
Humans
;
Gefitinib/pharmacology*
;
Caspase 9
;
Caspase 8
;
Cyclin D1
;
Carcinoma, Non-Small-Cell Lung
;
Glycogen Synthase Kinase 3 beta
;
Mice, Nude
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt
;
Lung Neoplasms/genetics*
;
Adenocarcinoma of Lung/drug therapy*
;
Protein Kinase Inhibitors/pharmacology*
;
ErbB Receptors/genetics*

Result Analysis
Print
Save
E-mail