1.Paroxetine alleviates dendritic cell and T lymphocyte activation via GRK2-mediated PI3K-AKT signaling in rheumatoid arthritis.
Tingting LIU ; Chao JIN ; Jing SUN ; Lina ZHU ; Chun WANG ; Feng XIAO ; Xiaochang LIU ; Liying LV ; Xiaoke YANG ; Wenjing ZHOU ; Chao TAN ; Xianli WANG ; Wei WEI
Chinese Medical Journal 2025;138(4):441-451
BACKGROUND:
G protein-coupled receptor kinase 2 (GRK2) could participate in the regulation of diverse cells via interacting with non-G-protein-coupled receptors. In the present work, we explored how paroxetine, a GRK2 inhibitor, modulates the differentiation and activation of immune cells in rheumatoid arthritis (RA).
METHODS:
The blood samples of healthy individuals and RA patients were collected between July 2021 and March 2022 from the First Affiliated Hospital of Anhui Medical University. C57BL/6 mice were used to induce the collagen-induced arthritis (CIA) model. Flow cytometry analysis was used to characterize the differentiation and function of dendritic cells (DCs)/T cells. Co-immunoprecipitation was used to explore the specific molecular mechanism.
RESULTS:
In patients with RA, high expression of GRK2 in peripheral blood lymphocytes, accompanied by the increases of phosphatidylinositol 3 kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR). In animal model, a decrease in regulatory T cells (T regs ), an increase in the cluster of differentiation 8 positive (CD8 + ) T cells, and maturation of DCs were observed. Paroxetine, when used in vitro and in CIA mice, restrained the maturation of DCs and the differentiation of CD8 + T cells, and induced the proportion of T regs . Paroxetine inhibited the secretion of pro-inflammatory cytokines, the expression of C-C motif chemokine receptor 7 in DCs and T cells. Simultaneously, paroxetine upregulated the expression of programmed death ligand 1, and anti-inflammatory cytokines. Additionally, paroxetine inhibited the PI3K-AKT-mTOR metabolic pathway in both DCs and T cells. This was associated with a reduction in mitochondrial membrane potential and changes in the utilization of glucose and lipids, particularly in DCs. Paroxetine reversed PI3K-AKT pathway activation induced by 740 Y-P (a PI3K agonist) through inhibiting the interaction between GRK2 and PI3K in DCs and T cells.
CONCLUSION
Paroxetine exerts an immunosuppressive effect by targeting GRK2, which subsequently inhibits the metabolism-related PI3K-AKT-mTOR pathway of DCs and T cells in RA.
G-Protein-Coupled Receptor Kinase 2/metabolism*
;
Arthritis, Rheumatoid/immunology*
;
Animals
;
Dendritic Cells/metabolism*
;
Paroxetine/therapeutic use*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Mice
;
Humans
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Male
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Lymphocyte Activation/drug effects*
;
Female
;
T-Lymphocytes/metabolism*
;
Middle Aged
2.Expression and Clinical Significance of CaMKIIγ in Patients with Acute Myeloid Leukemia.
Ming-Kai LIU ; Xu DAI ; Xiao-Ying ZHAO ; Wei-Wei ZHENG ; Ya-Jing MA
Journal of Experimental Hematology 2025;33(3):726-732
OBJECTIVE:
To investigate the expression and potential mechanism of calcium/calmodulin-dependent protein kinase II gamma (CaMKIIγ) in patients with acute myeloid leukemia (AML).
METHODS:
Peripheral blood samples were collected from 90 AML patients, and mononuclear cells were isolated. The expression of CaMKIIγ was measured using real-time quantitative PCR and Western blot. The diagnostic value of CaMKIIγ for AML was assessed, and its correlation with clinical characteristics was analyzed using the clinical data of patients. Additionally, the molecular mechanisms of CaMKIIγ were preliminarily explored.
RESULTS:
Compared with the control group, the expression of CaMKIIγ was significantly upregulated in AML patients. Receiver operating characteristic (ROC) curve analysis showed that CaMKIIγ could serve as a promising biomarker for distinguishing AML patients from healthy individuals. Furthermore, CaMKIIγ was significantly correlated with white blood cell (WBC) count and FLT3-ITD mutation. CaMKIIγ was highly expressed in both newly diagnosed and relapsed AML patients, while decreased during remission. In AML cell lines, the expression levels of CaMKIIγ were all elevated. Inhibition of phosphorylated CaMKIIγ by berbamine led to a decrease in pAKT and pSTAT5 expression.
CONCLUSION
CaMKIIγ is significantly upregulated in AML patients, and is associated with poor clinicopathological features and unfavorable prognosis. It may serve as a prognostic marker and potential therapeutic target in AML. Its expression may be related to the activation of pAKT and pSTAT5, suggesting that CaMKIIγ may contribute to the development and progression of AML through the activation of the AKT/STAT5 signaling pathway.
Humans
;
Leukemia, Myeloid, Acute/metabolism*
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism*
;
STAT5 Transcription Factor/metabolism*
;
Male
;
Female
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Mutation
;
Middle Aged
;
Adult
;
Clinical Relevance
3.Tanshinone II A Facilitates Chemosensitivity of Osteosarcoma Cells to Cisplatin via Activation of p38 MAPK Pathway.
Da-Ming XIE ; Zhi-Yun LI ; Bing-Kai REN ; Rui GONG ; Dong YANG ; Sheng HUANG
Chinese journal of integrative medicine 2025;31(4):326-335
OBJECTIVE:
To examine the mechanism of action of tanshinone II A (Tan II A) in promoting chemosensitization of osteosarcoma cells to cisplatin (DDP).
METHODS:
The effects of different concentrations of Tan II A (0-80 µ mol/L) and DDP (0-2 µ mol/L) on the proliferation of osteosarcoma cell lines (U2R, U2OS, 143B, and HOS) at different times were examined using the cell counting kit-8 and colony formation assays. Migration and invasion of U2R and U2OS cells were detected after 24 h treatment with 30 µ mol/L Tan II A, 0.5 µ mol/L DDP alone, and a combination of 10 µ mol/L Tan II A and 0.25 µ mol/L DDP using the transwell assay. After 48 h of treatment of U2R and U2OS cells with predetermined concentrations of each group of drugs, the cell cycle was analyzed using a cell cycle detection kit and flow cytometry. After 48 h treatment, apoptosis of U2R and U2OS cells was detected using annexin V-FITC apoptosis detection kit and flow cytometry. U2R cells were inoculated into the unilateral axilla of nude mice and then the mice were randomly divided into 4 groups of 6 nude mice each. The 4 groups were treated with equal volume of Tan II A (15 mg/kg), DDP (3 mg/kg), Tan II A (7.5 mg/kg) + DDP (1.5 mg/kg), and normal saline, respectively. The body weight of the nude mice was weighed, and the tumor volume and weight were measured. Cell-related gene and signaling pathway expression were detected by RNA sequencing and Kyoto Encyclopedia of Genes and Genomes pathway analysis. p38 MAPK signaling pathway proteins and apoptotic protein expressions were detected by Western blot.
RESULTS:
In vitro studies have shown that Tan II A, DDP and the combination of Tan II A and DDP inhibit the proliferation, migration and invasion of osteosarcoma cells. The inhibitory effect was more pronounced in the Tan II A and DDP combined treatment group (P<0.05 or P<0.01). Osteosarcoma cells underwent significantly cell-cycle arrest and cell apoptosis by Tan II A-DDP combination treatment (P<0.05 or P<0.01). In vivo studies demonstrated that the Tan II A-DD combination treatment group significantly inhibited tumor growth compared to the Tan II A and DDP single drug group (P<0.01). Additionally, we found that the combination of Tan II A and DDP treatment enhanced the p38 MAPK signaling pathway. Western blot assays showed higher p-p38, cleaved caspase-3, and Bax and lower caspase-3, and Bcl-2 expressions with the combination of Tan II A and DDP treatment compared to the single drug treatment (P<0.01).
CONCLUSION
Tan II A synergizes with DDP by activating the p38/MAPK pathway to upregulate cleaved caspase-3 and Bax pro-apoptotic gene expressions, and downregulate caspase-3 and Bcl-2 inhibitory apoptotic gene expressions, thereby enhancing the chemosensitivity of osteosarcoma cells to DDP.
Abietanes/therapeutic use*
;
Osteosarcoma/enzymology*
;
Cisplatin/therapeutic use*
;
Humans
;
Cell Line, Tumor
;
Animals
;
Apoptosis/drug effects*
;
Mice, Nude
;
Cell Proliferation/drug effects*
;
Cell Movement/drug effects*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
MAP Kinase Signaling System/drug effects*
;
Bone Neoplasms/enzymology*
;
Cell Cycle/drug effects*
;
Xenograft Model Antitumor Assays
;
Mice
;
Drug Resistance, Neoplasm/drug effects*
;
Neoplasm Invasiveness
;
Mice, Inbred BALB C
4.The 5-HT Descending Facilitation System Contributes to the Disinhibition of Spinal PKCγ Neurons and Neuropathic Allodynia via 5-HT2C Receptors.
Xiao ZHANG ; Xiao-Lan HE ; Zhen-Hua JIANG ; Jing QI ; Chen-Chen HUANG ; Jian-Shuai ZHAO ; Nan GU ; Yan LU ; Qun WANG
Neuroscience Bulletin 2025;41(7):1161-1180
Neuropathic pain, often featuring allodynia, imposes significant physical and psychological burdens on patients, with limited treatments due to unclear central mechanisms. Addressing this challenge remains a crucial unsolved issue in pain medicine. Our previous study, using protein kinase C gamma (PKCγ)-tdTomato mice, highlights the spinal feedforward inhibitory circuit involving PKCγ neurons in gating neuropathic allodynia. However, the regulatory mechanisms governing this circuit necessitate further elucidation. We used diverse transgenic mice and advanced techniques to uncover the regulatory role of the descending serotonin (5-HT) facilitation system on spinal PKCγ neurons. Our findings revealed that 5-HT neurons from the rostral ventromedial medulla hyperpolarize spinal inhibitory interneurons via 5-HT2C receptors, disinhibiting the feedforward inhibitory circuit involving PKCγ neurons and exacerbating allodynia. Inhibiting spinal 5-HT2C receptors restored the feedforward inhibitory circuit, effectively preventing neuropathic allodynia. These insights offer promising therapeutic targets for neuropathic allodynia management, emphasizing the potential of spinal 5-HT2C receptors as a novel avenue for intervention.
Animals
;
Neuralgia/physiopathology*
;
Protein Kinase C/metabolism*
;
Receptor, Serotonin, 5-HT2C/metabolism*
;
Hyperalgesia/physiopathology*
;
Mice, Transgenic
;
Mice
;
Spinal Cord/metabolism*
;
Serotonin/metabolism*
;
Male
;
Neurons/metabolism*
;
Mice, Inbred C57BL
5.Effects of Shugan Tiaoshen acupuncture on anxiety-like behavior and PKC/ERK/CREB pathway in the bed nucleus of the stria terminalis in rats with post-traumatic stress disorder.
Yongrui WANG ; Xianli ZHENG ; Xingke YAN
Chinese Acupuncture & Moxibustion 2024;44(11):1281-1288
OBJECTIVE:
To observe the effect of Shugan Tiaoshen acupuncture (acupuncture for soothing the liver and regulating the spirit) on the protein kinase C/extracellular signal-regulated kinase/cAMP response element-binding protein (PKC/ERK/CREB) signaling pathway in the bed nucleus of the stria terminalis (BNST) of rats with post-traumatic stress disorder (PTSD), and to explore the mechanism of acupuncture on alleviating anxiety and fear in PTSD.
METHODS:
Fifty SPF-grade male SD rats were randomly divided into a blank group (10 rats) and a PTSD model group (40 rats). The PTSD model was induced by using a combination of closed electric shock and forced exhaustive swimming. Thirty successfully modeled rats were randomly assigned to a model group, a medication group, and an acupuncture group, with 10 rats in each group. The rats in the medication group were treated with paroxetine hydrochloride solution by gavage, once daily for 12 consecutive days. The rats in the acupuncture group were treated with acupuncture at "Baihui" (GV 20) and bilateral "Neiguan" (PC 6), "Shenmen" (HT 7), "Taichong" (LR 3). "Baihui" (GV 20) was needled daily, while the other acupoints were alternately needled on the left side on odd days and the right side on even days, once daily for 12 consecutive days. Anxiety and fear behaviors changes were assessed by using the open field test and elevated plus maze test. Histological changes in the BNST were observed by using HE staining and Nissl staining. The expression of PKC, phosphorylated PKC (p-PKC), ERK1/2, phosphorylated ERK1/2 (p-ERK1/2), and p-CREB proteins in the BNST were detected by using Western blot.
RESULTS:
Compared with the blank group, the model group showed decreased time and total distance spent in the center of the open field and on the open arms of the elevated plus maze (P<0.05); the BNST tissues in the model group exhibited a reduced number of neurons, disorganized cell arrangement, cell shrinkage, nuclear condensation, abnormal neuronal structure, uneven Nissl staining, and reduced Nissl bodies. The model group showed increased protein expression of p-PKC and p-PKC/PKC ratio (P<0.05) and decreased protein expression of p-ERK1/2, p-CREB, and p-ERK1/2/ERK1/2 ratio (P<0.05). Compared with the model group, the medication group and the acupuncture group showed increased time and total distance spent in the center of the open field and on the open arms of the elevated plus maze (P<0.05); the BNST tissues showed increased number of neurons, more organized cell arrangement, improved neuronal structure, and increased Nissl bodies; the medication group and the acupuncture group also showed decreased p-PKC protein expression and p-PKC/PKC ratio (P<0.05) and increased p-ERK1/2, p-CREB protein expression, and p-ERK1/2/ERK1/2 ratio (P<0.05).
CONCLUSION
Shugan Tiaoshen acupuncture could alleviate anxiety and fear behaviors in PTSD rats, and improve neuronal damage in the BNST. The mechanism may be related to the regulation of the PKC/ERK/CREB signaling pathway in the BNST.
Animals
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Acupuncture Therapy
;
Protein Kinase C/metabolism*
;
Stress Disorders, Post-Traumatic/metabolism*
;
Anxiety/metabolism*
;
Cyclic AMP Response Element-Binding Protein/metabolism*
;
Humans
;
Septal Nuclei/metabolism*
;
Signal Transduction
;
Extracellular Signal-Regulated MAP Kinases/metabolism*
;
Acupuncture Points
;
Behavior, Animal
6.Savolitinib Induced Pathological Complete Response in Non-small Cell Lung Cancer with MET Amplification: A Case Report.
Meng LU ; Ran ZHANG ; Baiwei LI ; Haidi XU ; Yongkuan GUO ; Jian YOU ; Bingsheng SUN
Chinese Journal of Lung Cancer 2024;27(11):873-877
Mesenchymal-epithelial transition factor (MET) gene mutation is a large class of mutations commonly seen in non-small cell lung cancer (NSCLC). MET mutation includes subtypes such as MET exon 14 skipping mutation (METex14m) and MET amplification (METamp). For advanced NSCLC with METex14m, Savolitinib has a high sensitivity as a member of tyrosine kinase inhibitors (TKIs). METamp is a relatively rare genetic mutation type which can serve as a driver gene to mediate primary and later acquired drug resistance of epidermal growth factor receptor (EGFR)-TKIs. For advanced NSCLC with secondary METamp, EGFR-TKIs combined with MET-TKIs are usually used in clinical treatment, while the optimal treatment strategy for advanced NSCLC with primary METamp has not yet been determined. For locally advanced NSCLC patients with positive driver gene mutations such as EGFR, anaplastic lymphoma kinase (ALK) fusion and METex14m, there have been relevant cases reported that neoadjuvant targeted therapy could achieve a good prognosis, but there have been no cases of neoadjuvant targeted therapy for locally advanced NSCLC patients with METamp. This report describes a case of a locally advanced NSCLC patient with dual driver gene mutations (EGFR L858R combined with primary METamp), the tumor did not shrink after 1 month of Gefitinib monotherapy, but significantly subsided after 4 months of Savolitinib monotherapy. After radical surgery, the pathological results proved pathological complete response (pCR) of the tumor, and the patient had a good response to postoperative continual Savolitinib treatment, with no recurrence nor metastasis observed to date. This case reports the feasibility and effectiveness of neoadjuvant targeted therapy for locally advanced NSCLC with primary METamp, aiming to provide effective reference for perioperative treatment of locally advanced NSCLC with primary METamp.
.
Humans
;
Acrylamides/therapeutic use*
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Gene Amplification
;
Lung Neoplasms/pathology*
;
Protein Kinase Inhibitors/therapeutic use*
;
Proto-Oncogene Proteins c-met/genetics*
;
Triazines
7.A Case Report of EGFR-TKIs Resistant Secondary MET Gene Amplified Lung Squamous Cell Carcinoma and Literature Review.
Yalan LIU ; Peng CHEN ; Xinfu LIU
Chinese Journal of Lung Cancer 2024;27(11):878-884
With the rapid development of epidermal growth factor receptor (EGFR) gene testing of lung adenocarcinoma patients has been routinely carried out, EGFR mutations are also possible for some small samples of non-smoking female lung squamous cell carcinoma patients. This increases the opportunity for targeted therapy for this group of patients. However, drug resistance in patients with lung squamous cell carcinoma during targeted therapy is an important factor affecting subsequent treatment. There are multiple mechanisms of acquired drug resistance in targeted therapy, and the alteration of mesenchymal-epithelial transition factor (MET) signaling pathway is one of the common mechanisms of drug resistance. At present, some selective tyrosine kinase inhibitors (TKIs) of MET has been approved for non-small cell lung cancer with MET gene 14 exon skipping mutation, such as Glumetinib, Savolitinib, Tepotinib, Capmatinib, etc. Drugs that target secondary MET amplification are still in clinical trials. This paper retrospectively analyzed the clinical data of a female patient with EGFR-TKIs resistant secondary MET amplified squamous cell lung cancer, and reviewed relevant literature to explore how to optimize the treatment of lung squamous cell carcinoma patients with EGFR mutation, so as to provide clinical reference for the diagnosis and treatment of such patients.
.
Female
;
Humans
;
Carcinoma, Squamous Cell/drug therapy*
;
Drug Resistance, Neoplasm/genetics*
;
ErbB Receptors/antagonists & inhibitors*
;
Gene Amplification
;
Lung Neoplasms/drug therapy*
;
Protein Kinase Inhibitors/pharmacology*
;
Proto-Oncogene Proteins c-met/genetics*
8.Crizotinib Treatment for Lorlatinib-resistant MET-amplified EML4-ALK-fusion Positive Advanced Lung Adenocarcinoma: A Case Report.
Xinyi WANG ; Ning MU ; Mei LIU ; Yue XU ; Shengnan WU ; Huan LV ; Chunhua MA
Chinese Journal of Lung Cancer 2024;27(12):956-960
Lung cancer is a major cause of cancer-related mortality worldwide. Among patients with non-small cell lung cancer (NSCLC), approximately 3%-7% harbor anaplastic lymphoma kinase (ALK) gene fusions. In recent years, multiple tyrosine kinase inhibitors (TKIs) have significantly improved the survival of patients with metastatic ALK-positive NSCLC. However, disease progression due to resistance remains a challenge. This article retrospectively analyzes a case of advanced lung adenocarcinoma with the echinoderm microtubule associated protein like 4 (EML4)-ALK fusion variant 3 (V3). The patient developed resistance to Lorlatinib treatment accompanied by mesenchymal-epithelial transition factor (MET) amplification. Effective tumor control was achieved with the combined use of Crizotinib and Lorlatinib, providing a valuable reference for further exploration of treatment strategies following resistance to ALK-TKIs in clinical practice.
.
Humans
;
Adenocarcinoma/genetics*
;
Adenocarcinoma of Lung/genetics*
;
Aminopyridines/therapeutic use*
;
Crizotinib/therapeutic use*
;
Drug Resistance, Neoplasm/drug effects*
;
Lactams/therapeutic use*
;
Lung Neoplasms/genetics*
;
Oncogene Proteins, Fusion/metabolism*
;
Protein Kinase Inhibitors/therapeutic use*
;
Proto-Oncogene Proteins c-met/metabolism*
;
Pyrazoles/therapeutic use*
9.Butyrate acts as a G-protein-coupled receptor ligand that prevents high glucose-induced amyloidogenesis in N2a cells through the protein kinase B/glycogen synthase kinase-3β pathway.
Yujie XU ; Shufang SHAN ; Xiaoyu WANG ; Lingli LI ; Liang MA ; Jingyuan XIONG ; Ping FU ; Guo CHENG
Chinese Medical Journal 2023;136(19):2368-2370
10.Effect and mechanism of Poria cocos polysaccharides on myocardial cell apoptosis in rats with myocardial ischemia-reperfusion injury by regulating Rho-ROCK signaling pathway.
Jun XIE ; Yuan-Yuan WANG ; Ju-Xin LI ; Feng-Min GAO
China Journal of Chinese Materia Medica 2023;48(23):6434-6441
This study aimed to investigate the effect and underlying mechanism of Poria cocos polysaccharides(PCP) on myocardial cell apoptosis in the rat model of myocardial ischemia-reperfusion injury(MI/RI). Male SPF-grade SD rats were randomly divided into a sham group(saline), a model group(saline), low-and high-dose PCP groups(100 and 200 mg·kg~(-1)), and a fasudil group(10 mg·kg~(-1)), with 16 rats in each group. Except for the sham group, the other four groups underwent left anterior descending coronary artery ligation for 30 min followed by reperfusion for 2 h to establish the MI/RI model. The myocardial infarct area was assessed by TTC staining. Histological changes were observed through HE staining. Myocardial cell apoptosis was evaluated using TUNEL staining. Serum lactate dehydrogenase(LDH), creatine kinase MB(CK-MB), interleukin-1β(IL-1β) and IL-18 levels, myocardial superoxide dismutase(SOD) activity and malondialdehyde(MDA) levels were detected by ELISA. Protein expression of B-cell lymphoma 2(Bcl-2), Bcl-2 associated X protein(Bax), cleaved caspase-3, Ras homolog gene A(RhoA), myosin phosphatase target subunit 1(MYPT-1), phosphorylated MYPT-1(p-MYPT-1), and Rho-associated coiled-coil forming kinase 1(ROCK 1) were measured by Western blot. Pathological staining of myocardial tissue revealed that in the model group, there was focal necrosis of myocardial tissue, myocardial cell swelling, unclear boundaries, and neutrophil infiltration. These pathological changes were alleviated in the low-and high-dose PCP groups and the fasudil group. Compared with the model group, the low-and high-dose PCP groups and the fasudil group showed significantly reduced myocardial infarct area and myocardial cell apoptosis rate. Compared with the sham group, the model group exhibited elevated serum LDH, CK-MB, IL-1β and IL-18 levels, increased MDA levels, relative protein expression of Bax, cleaved caspase-3, RhoA, ROCK1 and p-MYPT-1, and decreased myocardial SOD levels and Bcl-2 protein expression. Compared with the model group, the PCP groups and the fasudil group showed lowered serum LDH, CK-MB, IL-1β and IL-18 levels, decreased MDA levels, relative protein expression of Bax, cleaved caspase-3, RhoA, ROCK1 and p-MYPT-1, and increased myocardial SOD levels and Bcl-2 protein expression. PCP exhibited a certain preventive effect on myocardial tissue pathological damage and myocardial cell apoptosis in MI/RI rats, possibly related to the inhibition of the Rho-ROCK signaling pathway activation, thereby reducing oxidative stress and inflammatory responses.
Rats
;
Male
;
Animals
;
Myocardial Reperfusion Injury/drug therapy*
;
bcl-2-Associated X Protein/metabolism*
;
Rats, Sprague-Dawley
;
Caspase 3/metabolism*
;
Interleukin-18
;
Wolfiporia
;
Signal Transduction
;
Myocardial Infarction/drug therapy*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Creatine Kinase, MB Form
;
Apoptosis
;
Polysaccharides/pharmacology*
;
Superoxide Dismutase/metabolism*
;
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives*

Result Analysis
Print
Save
E-mail