1.Titin: structure, isoforms and functional regulation.
Chun-Jie GUO ; Liang YU ; Yan-Jin LI ; Yue ZHOU
Acta Physiologica Sinica 2023;75(4):544-554
Titin, the largest known protein in the body expressed in three isoforms (N2A, N2BA and N2B), is essential for muscle structure, force generation, conduction and regulation. Since the 1950s, muscle contraction mechanisms have been explained by the sliding filament theory involving thin and thick muscle filaments, while the contribution of cytoskeleton in force generation and conduction was ignored. With the discovery of insoluble protein residues and large molecular weight proteins in muscle fibers, the third myofilament, titin, has been identified and attracted a lot of interests. The development of single molecule mechanics and gene sequencing technology further contributed to the extensive studies on the arrangement, structure, elastic properties and components of titin in sarcomere. Therefore, this paper reviews the structure, isforms classification, elastic function and regulatory factors of titin, to provide better understanding of titin.
Connectin/genetics*
;
Muscle Proteins/metabolism*
;
Protein Isoforms/genetics*
;
Sarcomeres/metabolism*
;
Muscle Fibers, Skeletal/metabolism*
2.Physical interactions and mutational analysis of MoYpt7 in Magnaporthe oryzae.
Lu-Yao HUANG ; Min WU ; Xiao-Yun YU ; Lin LI ; Fu-Cheng LIN ; Xiao-Hong LIU
Journal of Zhejiang University. Science. B 2018;19(1):79-84
In this study, we analyzed the physical interactions of the dominant negative isoform of MoYpt7. Our results show that MoYpt7 interacts with MoGdi1. The dominant negative isoform of MoYpt7 (dominant negative isoform, N125I) is essential for colony morphology, conidiation, and pathogenicity in the rice blast fungus. These results further demonstrate the biological functions of MoYpt7 in Magnaporthe oryzae.
DNA Mutational Analysis
;
Fungal Proteins/metabolism*
;
Gene Expression Regulation, Fungal
;
Genes, Fungal
;
Green Fluorescent Proteins/metabolism*
;
Magnaporthe/genetics*
;
Microscopy, Fluorescence
;
Mutation
;
Oryza/microbiology*
;
Phenotype
;
Plant Diseases/microbiology*
;
Protein Isoforms
3.Concurrence of e1a2 and e19a2 BCR-ABL1 Fusion Transcripts in a Typical Case of Chronic Myeloid Leukemia.
Jaehyeon LEE ; Dal Sik KIM ; Hye Soo LEE ; Sam Im CHOI ; Yong Gon CHO
Annals of Laboratory Medicine 2017;37(1):74-76
No abstract available.
Aged, 80 and over
;
Base Sequence
;
Bone Marrow/pathology
;
DNA/chemistry/metabolism
;
Female
;
Fusion Proteins, bcr-abl/*genetics
;
Humans
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis/*genetics
;
Multiplex Polymerase Chain Reaction
;
Protein Isoforms/genetics
;
Sequence Analysis, DNA
4.The minor collagens in articular cartilage.
Yunyun LUO ; Dovile SINKEVICIUTE ; Yi HE ; Morten KARSDAL ; Yves HENROTIN ; Ali MOBASHERI ; Patrik ÖNNERFJORD ; Anne BAY-JENSEN
Protein & Cell 2017;8(8):560-572
Articular cartilage is a connective tissue consisting of a specialized extracellular matrix (ECM) that dominates the bulk of its wet and dry weight. Type II collagen and aggrecan are the main ECM proteins in cartilage. However, little attention has been paid to less abundant molecular components, especially minor collagens, including type IV, VI, IX, X, XI, XII, XIII, and XIV, etc. Although accounting for only a small fraction of the mature matrix, these minor collagens not only play essential structural roles in the mechanical properties, organization, and shape of articular cartilage, but also fulfil specific biological functions. Genetic studies of these minor collagens have revealed that they are associated with multiple connective tissue diseases, especially degenerative joint disease. The progressive destruction of cartilage involves the degradation of matrix constituents including these minor collagens. The generation and release of fragmented molecules could generate novel biochemical markers with the capacity to monitor disease progression, facilitate drug development and add to the existing toolbox for in vitro studies, preclinical research and clinical trials.
Aggrecans
;
chemistry
;
genetics
;
metabolism
;
Animals
;
Biomarkers
;
metabolism
;
Cartilage, Articular
;
chemistry
;
metabolism
;
pathology
;
Collagen
;
chemistry
;
classification
;
genetics
;
metabolism
;
Extracellular Matrix Proteins
;
chemistry
;
genetics
;
metabolism
;
Gene Expression
;
Humans
;
Osteoarthritis
;
diagnosis
;
genetics
;
metabolism
;
pathology
;
Protein Isoforms
;
chemistry
;
classification
;
genetics
;
metabolism
5.Non-catalytic roles for TET1 protein negatively regulating neuronal differentiation through srGAP3 in neuroblastoma cells.
Jie GAO ; Yue MA ; Hua-Lin FU ; Qian LUO ; Zhen WANG ; Yu-Huan XIAO ; Hao YANG ; Da-Xiang CUI ; Wei-Lin JIN
Protein & Cell 2016;7(5):351-361
The methylcytosine dioxygenases TET proteins (TET1, TET2, and TET3) play important regulatory roles in neural function. In this study, we investigated the role of TET proteins in neuronal differentiation using Neuro2a cells as a model. We observed that knockdown of TET1, TET2 or TET3 promoted neuronal differentiation of Neuro2a cells, and their overexpression inhibited VPA (valproic acid)-induced neuronal differentiation, suggesting all three TET proteins negatively regulate neuronal differentiation of Neuro2a cells. Interestingly, the inducing activity of TET protein is independent of its enzymatic activity. Our previous studies have demonstrated that srGAP3 can negatively regulate neuronal differentiation of Neuro2a cells. Furthermore, we revealed that TET1 could positively regulate srGAP3 expression independent of its catalytic activity, and srGAP3 is required for TET-mediated neuronal differentiation of Neuro2a cells. The results presented here may facilitate better understanding of the role of TET proteins in neuronal differentiation, and provide a possible therapy target for neuroblastoma.
Animals
;
Catalytic Domain
;
Cell Differentiation
;
drug effects
;
physiology
;
Cell Line, Tumor
;
DNA-Binding Proteins
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Enzyme Inhibitors
;
pharmacology
;
GTPase-Activating Proteins
;
genetics
;
metabolism
;
Immunohistochemistry
;
Mice
;
Microscopy, Fluorescence
;
Neuroblastoma
;
metabolism
;
pathology
;
Protein Isoforms
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Proto-Oncogene Proteins
;
antagonists & inhibitors
;
genetics
;
metabolism
;
RNA Interference
;
RNA, Messenger
;
metabolism
;
RNA, Small Interfering
;
metabolism
;
Valproic Acid
;
pharmacology
6.Phorbol myristate acetate suppresses breast cancer cell growth via down-regulation of P-Rex1 expression.
Chuu-Yun A WONG ; Haihong JIANG ; Peter W ABEL ; Margaret A SCOFIELD ; Yan XIE ; Taotao WEI ; Yaping TU
Protein & Cell 2016;7(6):445-449
Breast Neoplasms
;
metabolism
;
pathology
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Down-Regulation
;
drug effects
;
Female
;
Guanine Nucleotide Exchange Factors
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Humans
;
Indoles
;
pharmacology
;
MCF-7 Cells
;
Maleimides
;
pharmacology
;
Protein Isoforms
;
genetics
;
metabolism
;
Protein Kinase C
;
antagonists & inhibitors
;
genetics
;
metabolism
;
RNA Interference
;
RNA, Small Interfering
;
metabolism
;
Receptor, ErbB-2
;
genetics
;
metabolism
;
Tetradecanoylphorbol Acetate
;
toxicity
7.Structural studies on MRG701 chromodomain reveal a novel dimerization interface of MRG proteins in green plants.
Yanchao LIU ; Hong WU ; Yu YU ; Ying HUANG
Protein & Cell 2016;7(11):792-803
MRG proteins are conserved during evolution in fungi, flies, mammals and plants, and they can exhibit diversified functions. The animal MRGs were found to form various complexes to activate gene expression. Plant MRG1/2 and MRG702 were reported to be involved in the regulation of flowering time via binding to H3K36me3-marked flowering genes. Herein, we determined the crystal structure of MRG701 chromodomain (MRG701). MRG701 forms a novel dimerization fold both in crystal and in solution. Moreover, we found that the dimerization of MRG chromodomains is conserved in green plants. Our findings may provide new insights into the mechanism of MRGs in regulation of gene expression in green plants.
Amino Acid Sequence
;
Arabidopsis
;
genetics
;
metabolism
;
Arabidopsis Proteins
;
chemistry
;
genetics
;
metabolism
;
Binding Sites
;
Chromosomal Proteins, Non-Histone
;
chemistry
;
genetics
;
metabolism
;
Cloning, Molecular
;
Crystallography, X-Ray
;
Escherichia coli
;
genetics
;
metabolism
;
Gene Expression
;
Histones
;
chemistry
;
genetics
;
metabolism
;
Models, Molecular
;
Oryza
;
genetics
;
metabolism
;
Peptides
;
chemistry
;
genetics
;
metabolism
;
Protein Binding
;
Protein Interaction Domains and Motifs
;
Protein Isoforms
;
chemistry
;
genetics
;
metabolism
;
Protein Multimerization
;
Protein Structure, Secondary
;
Recombinant Proteins
;
chemistry
;
genetics
;
metabolism
;
Sequence Alignment
;
Sequence Homology, Amino Acid
;
Viridiplantae
;
genetics
;
metabolism
8.Expression of osteopontin splice variant and its clinical significance in gastric cancer.
Xianjun SUN ; Longgang WANG ; Wenhong HOU ; Yanliang LI ; Liqing LIU ; Wenshu ZUO ; Jinming YU
Chinese Journal of Oncology 2015;37(6):427-430
OBJECTIVETo investigate the expression of osteopontin (OPN) splice variant mRNA, including the three isoforms OPN-A, OPN-B, and OPN-C, to explore its correlation with clinicopathologic features in gastric cancer, and to elucidate their role in tumor invasion and distant metastasis of gastric cancer.
METHODSThe expression of OPN-A, OPN-B and OPN-C mRNA were detected by real-time reverse transcriptase-polymerase chain reaction in 66 gastric cancer tissues. The relationship between the expression of OPN-A, OPN-B and OPN-C mRNA and clinicopathologic features of gastric cancer was analyzed.
RESULTSThe expression of OPN-C mRNA in the gastric cancer tissue was 3.21-fold higher than that in peritumoral mucosal tissue, showing a significant difference between them (P < 0.001). OPN-C mRNA expression was correlated with the depth of tumor invasion, tumor diameter, lymph node meatastasis, distant meatastasis and had no correlation with differentiation grades. The low expression of OPN-C mRNA was correlated with long survival benefit (P = 0.03). The expression of OPN-A and OPN-B mRNA had no significant relationship with clinicopathologic features of gastric cancer.
CONCLUSIONSOne of the isoform of osteopontin (OPN) OPN-C mRNA is overexpressed in gastric cancer. The overexpression of OPN-C mRNA may reflect the progression and is associated with the prognosis of gastric cancer. OPN-C mRNA may have value as a prognostic biomarker in gastric cancer. However, the expression of OPN-A and OPN-B are not correlated with the progression and metastasis of gastric cancer.
Disease Progression ; Gastric Mucosa ; metabolism ; Humans ; Lymph Nodes ; Lymphatic Metastasis ; Neoplasm Invasiveness ; Neoplasm Proteins ; genetics ; Osteopontin ; genetics ; Prognosis ; Protein Isoforms ; genetics ; RNA, Messenger ; metabolism ; Real-Time Polymerase Chain Reaction ; Stomach Neoplasms ; genetics ; mortality ; pathology
9.Structure and Function of an Alternative Splicing Isoform of Stimulator of Interferon Genes STING(sv).
Yanyan WANG ; Rui JIN ; Guoping ZHOU ; Huaguo XU
Chinese Journal of Virology 2015;31(5):494-499
Stimulator of interferon genes (STING) is an important protein of the innate immune response, and protects against viral infections. To search for an alternative splicing isoform of STING, we undertook rapid amplification of cDNA ends (RACE) and RT-PCR with RNA extracted from human embryonic kidney (HEK) 293 cells and primers designed according to the mRNA sequence of full-length STING(NM-198282. 82). The new sequence was compared using a bioinformatics method. Then, a newly discovered, alternative splicing isoform of STING, named "STING(sv)", and STING(wt) were subcloned into the eukaryotic expression vector pEGFP-C1 and pcDNA 3. 1. Whole-cell extracts were analyzed by western blotting and then probed with monoclonal antibody against enhanced green fluorescent protein (EGFP) after transfection of EGFP-STING(wt) and EGFP-STING(wt) plasmids in HEK293 cells. pcDNA-STING(wt) and pcDNA-STING(wt) were transfected in HEK293 cells, and the luciferase assay carried out. Compared with STING(wt), STING(sv) lacks exon 7 so that shift in the reading frame may produce a protein with a different C-terminal in amino acids 1-30. Western blotting confirmed an expected strong band at 58 x 10(3) kD. The functional luciferase assay showed that STING(sv) inhibited the activity of the interferon (IFN)-β promoter. STING(sv) can be expressed in multiple tissues and distinct cell lines. Our discovery of a new, alternative splicing isoform of STING provides new insights into the functional regulation of STING. STING(sv) could be a dominant negative inhibitor for the activity of the IFN-β promoter in the virus-infection pathway. Hence, STING(sv) could participate in the "fine tuning" of the virus-induced activation of IFN. Therefore, exploring the role of STING(sv) in the pathogenesis of human diseases could be very worthwhile.
Alternative Splicing
;
Amino Acid Sequence
;
HEK293 Cells
;
Humans
;
Interferon-beta
;
genetics
;
Membrane Proteins
;
genetics
;
metabolism
;
Molecular Sequence Data
;
Promoter Regions, Genetic
;
Protein Isoforms
;
genetics
;
metabolism
;
Sequence Alignment
10.The crystal structure of fibroblast growth factor 18 (FGF18).
Alan BROWN ; Lucy E ADAM ; Tom L BLUNDELL
Protein & Cell 2014;5(5):343-347
Crystallography, X-Ray
;
Escherichia coli
;
metabolism
;
Fibroblast Growth Factors
;
chemistry
;
genetics
;
metabolism
;
Heparin
;
metabolism
;
Humans
;
Models, Molecular
;
Protein Binding
;
Protein Isoforms
;
chemistry
;
metabolism
;
Protein Structure, Tertiary
;
Recombinant Proteins
;
biosynthesis
;
chemistry
;
genetics
;
Sulfates
;
chemistry
;
metabolism

Result Analysis
Print
Save
E-mail