1.Banxia Xiexin Decoction suppresses malignant phenotypes of colon cancer cells via PARG/PARP1/NF-κB signaling pathway.
Yu-Qing HUANG ; Jia-Mei WANG ; Heng-Zhou LAI ; Chong XIAO ; Feng-Ming YOU ; Qi-Xuan KUANG ; Yi-Fang JIANG
China Journal of Chinese Materia Medica 2025;50(2):496-506
This study aims to delve into the influences and underlying mechanisms of Banxia Xiexin Decoction(BXD) on the proliferation, apoptosis, invasion, and migration of colon cancer cells. Firstly, the components of BXD in blood were identified by UPLC-MS/MS, and subsequently the content of these components were determined by HPLC. Then, different concentrations of BXD were used to treat both the normal intestinal epithelial cells(NCM460) and the colon cancer cells(HT29 and HCT116). The cell viability and apoptosis were examined by the cell counting kit-8(CCK-8) and flow cytometry, respectively. Western blot was employed to determine the expression of the apoptosis regulators B-cell lymphoma-2(Bcl-2) and Bcl-2-associated X(Bax). The cell wound healing assay and Transwell assay were employed to measure the cell migration and invasion, respectively. Additionally, Western blot was employed to determine the expression levels of epithelial-mesenchymal transition(EMT)-associated proteins, including epithelial cadherin(E-cadherin), neural cadherin(N-cadherin), and vimentin. The protein and mRNA levels of the factors in the poly(ADP-ribose) glycohydrolase(PARG)/poly(ADP-ribose) polymerase 1(PARP1)/nuclear factor kappa-B p65(NF-κB p65) signaling pathway were determined by Western blot and RT-qPCR, respectively. The results demonstrated that following BXD intervention, the proliferation of HT29 and HCT116 cells was significantly reduced. Furthermore, BXD promoted the apoptosis, enhanced the expression of Bcl-2, and suppressed the expression of Bax in colon cancer cells. At the same time, BXD suppressed the cell migration and invasion and augmented the expression of E-cadherin while diminishing the expression of N-cadherin and vimentin. In addition, BXD down-regulated the protein and mRNA levels of PARG, PARP1, and NF-κB p65. In conclusion, BXD may inhibit the malignant phenotypes of colon cancer cells by mediating the PARG/PARP1/NF-κB signaling pathway.
Colonic Neoplasms/pathology*
;
Drugs, Chinese Herbal/pharmacology*
;
Phenotype
;
Signal Transduction/drug effects*
;
Cell Proliferation/drug effects*
;
Apoptosis
;
Cell Movement/drug effects*
;
Neoplasm Invasiveness
;
HCT116 Cells
;
Proto-Oncogene Proteins c-bcl-2/biosynthesis*
;
Humans
;
Poly (ADP-Ribose) Polymerase-1
;
Glycoside Hydrolases
;
bcl-2-Associated X Protein
;
NF-kappa B p50 Subunit
2.Baculovirus expression system-based expression of horseshoe crab factor C and its activity.
Lan LAN ; Huanlei LIU ; Hao NAN ; Sijun HE ; Wangcheng SONG ; Yunlong WANG ; Xinjuan FAN ; Xiangbo WAN ; Xiaodong XU
Chinese Journal of Biotechnology 2025;41(4):1428-1439
Endotoxins are common exogenous pyrogens. Excessive endotoxins in medical devices and injections can lead to serious consequences such as sepsis, septic shock, and even death. Therefore, endotoxin detection plays a crucial role in medical, pharmaceutical, and food sectors. The wide application of Limulus amebocyte lysate (LAL) has led to a sharp decline in the number of horseshoe crabs. Moreover, the LAL assay has limitations such as interbatch variations and difficulty in quantification. The recombinant factor C (rFC) assay is stable between batches, highly sensitive, and capable of quantitation, and thus it can be used as an alternative for the LAL assay. However, the high cost and complex procedures involved in producing recombinant factor C have limited the widespread application of this method. In order to simplify the preparation and reduce the production cost of recombinant factor C, this study focuses on the production of recombinant factor C based on the baculovirus expression system. Multiple measures such as a high-yield and anti-apoptotic vector qBac-IIIG, the optimal signal peptide, and the optimized codon were used to reach the goal of endotoxin detection with cell supernatant. This method simplifies the steps of protein purification. The sensitivity of the supernatant reached 0.05 EU/mL in a 1-L fermentation system, and 500 000 detecting reactions can be supported per liter of fermentation broth. This study increases the yield and activity of recombinant factor C, simplifies the procedures of protein purification, and reduces the cost, laying a foundation for the promotion and application of recombinant factor C in endotoxin detection.
Animals
;
Recombinant Proteins/genetics*
;
Horseshoe Crabs/chemistry*
;
Baculoviridae/metabolism*
;
Endotoxins/analysis*
;
Protein C/biosynthesis*
;
Genetic Vectors/genetics*
;
Arthropod Proteins/genetics*
;
Enzyme Precursors
;
Serine Endopeptidases
3.Novel and potent inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses including newly-emerged coronavirus SARS-CoV-2.
Rui XIONG ; Leike ZHANG ; Shiliang LI ; Yuan SUN ; Minyi DING ; Yong WANG ; Yongliang ZHAO ; Yan WU ; Weijuan SHANG ; Xiaming JIANG ; Jiwei SHAN ; Zihao SHEN ; Yi TONG ; Liuxin XU ; Yu CHEN ; Yingle LIU ; Gang ZOU ; Dimitri LAVILLETE ; Zhenjiang ZHAO ; Rui WANG ; Lili ZHU ; Gengfu XIAO ; Ke LAN ; Honglin LI ; Ke XU
Protein & Cell 2020;11(10):723-739
Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.
Animals
;
Antiviral Agents
;
pharmacology
;
therapeutic use
;
Betacoronavirus
;
drug effects
;
physiology
;
Binding Sites
;
drug effects
;
Cell Line
;
Coronavirus Infections
;
drug therapy
;
virology
;
Crotonates
;
pharmacology
;
Cytokine Release Syndrome
;
drug therapy
;
Drug Evaluation, Preclinical
;
Gene Knockout Techniques
;
Humans
;
Influenza A virus
;
drug effects
;
Leflunomide
;
pharmacology
;
Mice
;
Mice, Inbred BALB C
;
Orthomyxoviridae Infections
;
drug therapy
;
Oseltamivir
;
therapeutic use
;
Oxidoreductases
;
antagonists & inhibitors
;
metabolism
;
Pandemics
;
Pneumonia, Viral
;
drug therapy
;
virology
;
Protein Binding
;
drug effects
;
Pyrimidines
;
biosynthesis
;
RNA Viruses
;
drug effects
;
physiology
;
Structure-Activity Relationship
;
Toluidines
;
pharmacology
;
Ubiquinone
;
metabolism
;
Virus Replication
;
drug effects
4.Effects of estrogen receptor GPR30 agonist G1 on neuronal apoptosis and microglia polarization in traumatic brain injury rats.
Meng-Xian PAN ; Jun-Chun TANG ; Rui LIU ; Yu-Gong FENG ; Qi WAN
Chinese Journal of Traumatology 2018;21(4):224-228
PURPOSETo investigate the effects of estrogen G protein-coupled receptor 30 (GPR30) agonist G1 on hippocampal neuronal apoptosis and microglial polarization in rat traumatic brain injury (TBI).
METHODSMale SD rats were randomly divided into sham group, TBI + vehicle group, TBI + G1 group. Experimental moderate TBI was induced using Feeney's weigh-drop method. G1 (100μg/kg) or vehicle was intravenously injected from femoral vein at 30 min post-injury. Rats were sacrificed at 24 h after injury for detection of neuronal apoptosis and microglia polarization. Neuronal apoptosis was assayed by immunofluorescent staining of active caspase-3. M1 type microglia markers (iNOS and IL-1β) and M2 type markers (Arg1 and IL-4) were examined by immunoblotting or ELISA. Total protein level of Akt and phosphorylated Akt were assayed by immunoblotting.
RESULTSG1 significantly reduced active caspase-3 positive neurons in hippocampus. Meanwhile G1 increased the ratio of Arg1/iNOS. IL-1β production was decreased but IL-4 was increased after G1 treatment. G1 treatment also increased the active form of Akt.
CONCLUSIONSGPR30 agonist G1 inhibited neuronal apoptosis and favored microglia polarization to M2 type.
Animals ; Apoptosis ; drug effects ; Brain Injuries, Traumatic ; drug therapy ; pathology ; Cell Polarity ; Hippocampus ; drug effects ; Interleukin-1beta ; biosynthesis ; Male ; Microglia ; drug effects ; Neurons ; drug effects ; Proto-Oncogene Proteins c-akt ; metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, G-Protein-Coupled ; agonists
5.Effect of heat shock factor 1 on airway hyperresponsiveness and airway inflammation in mice with allergic asthma.
Jing WANG ; Li-Hong XIN ; Wei CHENG ; Zhen WANG ; Wen ZHANG
Chinese Journal of Contemporary Pediatrics 2017;19(2):222-228
OBJECTIVETo investigate the effect of heat shock factor 1 (HSF1) on airway hyperresponsiveness and airway inflammation in mice with asthma and possible mechanisms.
METHODSA total of 36 mice were randomly divided into four groups: control, asthma, HSF1 small interfering RNA negative control (siHSF1-NC), and siHSF1 intervention (n=9 each). Ovalbumin (OVA) sensitization and challenge were performed to induce asthma in the latter three groups. The mice in the siHSF1-NC and siHSF1 groups were treated with siHSF1-NC and siHSF1, respectively. A spirometer was used to measure airway responsiveness at 24 hours after the last challenge. The direct count method was used to calculate the number of eosinophils. ELISA was used to measure the serum level of OVA-specific IgE and levels of interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-13 (IL-13), and interferon-γ (IFN-γ) in lung tissues and bronchoalveolar lavage fluid (BALF). Quantitative real-time PCR was used to measure the mRNA expression of HSF1 in asthmatic mice. Western blot was used to measure the protein expression of HSF1, high-mobility group box 1 (HMGB1), and phosphorylated c-Jun N-terminal kinase (p-JNK).
RESULTSThe asthma group had significant increases in the mRNA and protein expression of HSF1 compared with the control group (P<0.05). The siHSF1 group had significantly reduced mRNA and protein expression of HSF1 compared with the siHSF1-NC group (P<0.05). The knockdown of HSF1 increased airway wall thickness, airway hyperresponsiveness, OVA-specific IgE content, and the number of eosinophils (P<0.05). Compared with the siHSF1-NC group, the siHSF1 group had significantly increased levels of IL-4, IL-5, and IL-13 and significantly reduced expression of IFN-γ in lung tissues and BALF (P<0.05), as well as significantly increased expression of HMGB1 and p-JNK (P<0.05).
CONCLUSIONSKnockdown of HSF1 aggravates airway hyperresponsiveness and airway inflammation in asthmatic mice, and its possible mechanism may involve the negative regulation of HMGB1 and JNK.
Animals ; Asthma ; etiology ; Bronchial Hyperreactivity ; etiology ; immunology ; Cytokines ; biosynthesis ; DNA-Binding Proteins ; analysis ; physiology ; Eosinophils ; physiology ; Female ; HMGB1 Protein ; analysis ; Heat Shock Transcription Factors ; Immunoglobulin E ; blood ; Mice ; Mice, Inbred BALB C ; Transcription Factors ; analysis ; physiology
6.Hericium erinaceus (Bull.: Fr.) Pers., a medicinal mushroom, activates peripheral nerve regeneration.
Kah-Hui WONG ; Gowri KANAGASABAPATHY ; Murali NAIDU ; Pamela DAVID ; Vikineswary SABARATNAM
Chinese journal of integrative medicine 2016;22(10):759-767
OBJECTIVETo study the ability of aqueous extract of Hericium erinaceus mushroom in the treatment of nerve injury following peroneal nerve crush in Sprague-Dawley rats.
METHODSAqueous extract of Hericium erinaceus was given by daily oral administration following peroneal nerve crush injury in Sprague-Dawley rats. The expression of protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) signaling pathways; and c-Jun and c-Fos genes were studied in dorsal root ganglia (DRG) whereas the activity of protein synthesis was assessed in peroneal nerves by immunohistochemical method.
RESULTSPeripheral nerve injury leads to changes at the axonal site of injury and remotely located DRG containing cell bodies of sensory afferent neurons. Immunofluorescence studies showed that DRG neurons ipsilateral to the crush injury in rats of treated groups expressed higher immunoreactivities for Akt, MAPK, c-Jun and c-Fos as compared with negative control group (P <0.05). The intensity of nuclear ribonucleoprotein in the distal segments of crushed nerves of treated groups was significantly higher than in the negative control group (P <0.05).
CONCLUSIONH. erinaceus is capable of promoting peripheral nerve regeneration after injury. Potential signaling pathways include Akt, MAPK, c-Jun, and c-Fos, and protein synthesis have been shown to be involved in its action.
Agaricales ; chemistry ; Animals ; Axons ; pathology ; Female ; Ganglia, Spinal ; metabolism ; Glucans ; analysis ; MAP Kinase Signaling System ; Nerve Crush ; Nerve Regeneration ; physiology ; Peripheral Nerves ; enzymology ; physiology ; Peroneal Nerve ; physiology ; Protein Biosynthesis ; Proto-Oncogene Proteins c-akt ; metabolism ; Proto-Oncogene Proteins c-fos ; genetics ; metabolism ; Proto-Oncogene Proteins c-jun ; genetics ; metabolism ; Rats, Sprague-Dawley
7.Tunicamycin-induced Endoplasmic Reticulum Stress Upregulates the Expression of Pentraxin 3 in Human Retinal Pigment Epithelial Cells.
Narae HWANG ; Min Young KWON ; Jae Bong CHA ; Su Wol CHUNG ; Je Moon WOO
Korean Journal of Ophthalmology 2016;30(6):468-478
PURPOSE: To investigate the production of long pentraxin 3 (PTX3) in response to tunicamycin-induced endoplasmic reticulum (ER) stress and its role in ER stress-associated cell death, PTX3 expression was evaluated in the human retinal pigment epithelial cell line, ARPE-19. METHODS: PTX3 production in ARPE-19 cells was analyzed in the absence or presence of tunicamycin treatment by enzyme-linked immunosorbent assay. PTX3 protein and mRNA levels were estimated using western blot analysis and real-time reverse transcription-polymerase chain reaction, respectively. Protein and mRNA levels of CCAAT-enhancer-binding protein homologous protein (CHOP) and ARPE-19 cell viability were measured in the presence of tunicamycin-induced ER stress in control or PTX3 small hairpin RNA (shRNA)-transfected ARPE-19 cells. RESULTS: The protein and mRNA levels of PTX3 were found to be significantly increased by tunicamycin treatment. PTX3 production was significantly decreased in inositol-requiring enzyme 1α shRNA-transfected ARPE-19 cells compared to control shRNA-transfected cells. Furthermore, pretreatment with the NF-κB inhibitor abolished tunicamycin-induced PTX3 production. Decreased cell viability and prolonged protein and mRNA expression of CHOP were observed under tunicamycin-induced ER stress in PTX3 shRNA transfected ARPE-19 cells. CONCLUSIONS: These results suggest that PTX3 production increased in the presence of tunicamycin-induced ER stress. Therefore, PTX3 could be an important protector of ER stress-induced cell death in human retinal pigment epithelial cells. Inositol-requiring enzyme 1α and the NF-κB signaling pathway may serve as potential targets for regulation of PTX3 expression in the retina. Therefore, their role in PTX3 expression needs to be further investigated.
Anti-Bacterial Agents/pharmacology
;
Apoptosis
;
Blotting, Western
;
C-Reactive Protein/biosynthesis/*genetics
;
Cells, Cultured
;
Endoplasmic Reticulum Stress/*drug effects/genetics
;
Enzyme-Linked Immunosorbent Assay
;
*Gene Expression Regulation
;
Humans
;
Polymerase Chain Reaction
;
RNA, Messenger/*genetics
;
Retinal Pigment Epithelium/*metabolism/pathology
;
Serum Amyloid P-Component/biosynthesis/*genetics
;
Tunicamycin/*pharmacology
8.Expression and characterization of porcine epidermal growth factor in Lactobacillus plantarum.
Zemin ZHONG ; Qiang LAI ; Xiyao YU ; Dehui LIU ; Yumao HUANG
Chinese Journal of Biotechnology 2015;31(9):1325-1334
Epidermal growth factor (EGF) is an epithelial cell growth factor that can stimulate intestinal development, repair the damage of epidermal cells as well as reduce the incidence of pathogen infection and diarrhea. In order to produce a recombinant Lactobacillus plantarum (L. plantarum) expressing porcine epidermal growth factor (pEGF), we constructed a recombinant vector stably expressing pEGF in L. plantarum strains. First, L. plantarum strain Lp-1 was isolated from intestinal contents of piglets. Then the functional domain of pEGF, M6 precursor protein signal peptide (SP) and super strong constitutive promoter (SCP) were connected with the backbone plasmid pIAβ8 to construct the recombinant vector that was transformed into Lp-1 by electroporation. Afterwards, pEGF was expressed in Lp-1 and detected by Tricine-SDS-PAGE and ELISA. After orally irrigated early-weaned BALB/c mice with the recombinant L. plantarum every morning and late afternoon for 10 consecutive days, body weight, villous height and crypt depth in the intestine were measured to examine the influence of the recombinant bacteria on the intestinal development of early-weaned mice in vivo. Finally, the results of our experiments demonstrated that pEGF was successfully expressed in Lp-1 and the molecular weight of pEGF was 6 kDa. In addition, the recombinant pEGF can enhanced the daily gain and exerted significance influence (P < 0.05) to the small intestinal morphology of early-weaned BALB/c mice. In conclusion, pEGF could be expressed in L. plantarum and the recombinant pEGF possesses good biological activity.
Animals
;
Electrophoresis, Polyacrylamide Gel
;
Epidermal Growth Factor
;
biosynthesis
;
Genetic Vectors
;
Intestines
;
microbiology
;
Lactobacillus plantarum
;
metabolism
;
Mice
;
Mice, Inbred BALB C
;
Plasmids
;
Promoter Regions, Genetic
;
Protein Precursors
;
Protein Sorting Signals
;
Recombinant Proteins
;
biosynthesis
;
Swine
9.The effect of Metformin on the proliferation and collagen synthesis of human keloids fibroblasts.
Chinese Journal of Plastic Surgery 2015;31(4):291-295
OBJECTIVETo investigate the effect of Metformin on the proliferation and collagen synthesis of the human keloids fibroblasts as well as the effect on phosphorylation of Akt/FoxO1 signal transduction pathway.
METHODSFibroblasts of keloid were divided into control group treated with medium solution and experimental groups treated with different concentrations of Metformin. 48 h later CCK-8 assay was adopted to evaluate cell survival; Western blot was performed to detect the Akt and FoxO1 phosphorylation; and Hydroxyproline reagent kit was used to detect the collagen synthesis.
RESULTSWith different concentrations (30, 60, 90, 120 mmol/L) of Metformin, the absorbance of cultured keloid fibroblasts detected by CCK8 assay decreased by (13.30 ± 2.04)%, (22.64 ± 4.70)%, (54.00 ± 5.34)% and (63.12 ± 3.48)%. The growth of fibroblasts was suppressed by Metformin in a dose-dependent manner. It showed that the level of phoshpo-akt and phoshpo-foxOl in keloids fibroblasts in experimental groups was lower than that in the control group and the collagen synthesis were also decreased in experimental groups, all in a dose-dependent manner (P < 0.05, P < 0.01).
CONCLUSIONSMetformin can effectively inhibit the proliferation and collagen synthesis of the human keloids fibroblasts in vitro, which may be associated with the suppression of phosphorylation of Akt/FoxO1 signaling pathway
Cell Proliferation ; drug effects ; Collagen ; biosynthesis ; Dose-Response Relationship, Drug ; Fibroblasts ; cytology ; drug effects ; metabolism ; Forkhead Box Protein O1 ; Forkhead Transcription Factors ; metabolism ; Humans ; Keloid ; pathology ; Metformin ; pharmacology ; Phosphorylation ; Proto-Oncogene Proteins c-akt ; metabolism ; Signal Transduction ; drug effects
10.Roles of PKCα on the biological functions of T cells.
Li-Fen YANG ; Hui-Min KONG ; Xiao-Qing ZHANG ; Fei YIN
Chinese Journal of Contemporary Pediatrics 2015;17(12):1354-1359
OBJECTIVETo study the roles of PKCα on the proliferation, apoptosis, differentiation, cytokine production and inducible regulatory T cell (iTreg) induction of T cells.
METHODST cells from WT (PKCα⁺/⁺) or PKCα knockout (PKCα⁻/⁻) mice were isolated and cultured in vitro. T cell proliferation and apoptosis were determined using ³H thymidine incorporation and CSFE/Annexin V staining. Cytokines production (IL-2, IL-4, IFN-γ and IL-17) was detected using ELISA. CD4⁺T cells were isolated and cultured in vitro via Th17 or iTreg biased condition. Flow cytometry was used to detect the cell differentiation.
RESULTSThe production of IL-2 upon TCR stimulation increased, while the contents of IL-4 and IL-17 decreased in the PKCα⁻/⁻ group compared with the PKCα⁺/⁺ group. The differentiation rate of Th17 cells decreased, while the iTreg production increased in the PKCα⁻/⁻ group compared with the PKCα⁺/⁺ group.
CONCLUSIONSPKC-α is proinflammatory.
Animals ; Cell Differentiation ; Cytokines ; biosynthesis ; Lymphocyte Activation ; Mice ; Protein Kinase C-alpha ; physiology ; Receptors, Antigen, T-Cell ; physiology ; T-Lymphocytes ; physiology ; Th17 Cells ; immunology

Result Analysis
Print
Save
E-mail