1.Clematichinenoside AR protects bone marrow mesenchymal stem cells from hypoxia-induced apoptosis by maintaining mitochondrial homeostasis.
Zi-Tong ZHAO ; Peng-Cheng TU ; Xiao-Xian SUN ; Ya-Lan PAN ; Yang GUO ; Li-Ning WANG ; Yong MA
China Journal of Chinese Materia Medica 2025;50(5):1331-1339
This study aims to elucidate the role and mechanism of clematichinenoside AR(CAR) in protecting bone marrow mesenchymal stem cells(BMSCs) from hypoxia-induced apoptosis. BMSCs were isolated by the bone fragment method and identified by flow cytometry. Cells were cultured under normal conditions(37℃, 5% CO_2) and hypoxic conditions(37℃, 90% N_2, 5% CO_2) and treated with CAR. The BMSCs were classified into eight groups: control(normal conditions), CAR(normal conditions + CAR), hypoxia 24 h, hypoxia 24 h + CAR, hypoxia 48 h, hypoxia 48 h + CAR, hypoxia 72 h, and hypoxia 72 h + CAR. The cell counting kit-8(CCK-8) assay and terminal-deoxynucleoitidyl transferase mediated nick end labeling(TUNEL) were employed to measure cell proliferation and apoptosis, respectively. The number of mitochondria and mitochondrial membrane potential were measured by MitoTracker®Red CM-H2XRo staining and JC-1 staining, respectively. The level of reactive oxygen species(ROS) was measured with the DCFH-DA fluorescence probe. The protein levels of B-cell lymphoma-2 associated X protein(BAX), caspase-3, and optic atrophy 1(OPA1) were determined by Western blot. The results demonstrated that CAR significantly increased cell proliferation. Compared with the control group, the hypoxia groups showed increased apoptosis rates, reduced mitochondria, elevated ROS levels, decreased mitochondrial membrane potential, upregulated expression of BAX and caspase-3, and downregulated expression of OPA1. In comparison to the corresponding hypoxia groups, CAR intervention significantly decreased the apoptosis rate, increased mitochondria, reduced ROS levels, elevated mitochondrial membrane potential, downregulated the expression of BAX and caspase-3, and upregulated the expression of OPA1. Therefore, it can be concluded that CAR may exert an anti-apoptotic effect on BMSCs under hypoxic conditions by regulating OPA1 to maintain mitochondrial homeostasis.
Mesenchymal Stem Cells/metabolism*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Hypoxia/drug effects*
;
Homeostasis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Rats, Sprague-Dawley
;
Membrane Potential, Mitochondrial/drug effects*
;
Saponins/pharmacology*
;
Caspase 3/genetics*
;
Male
;
bcl-2-Associated X Protein/genetics*
;
Bone Marrow Cells/metabolism*
;
Cell Proliferation/drug effects*
;
Protective Agents/pharmacology*
;
Cells, Cultured
2.Protective effect of Sini Decoction in attenuating cryopreservation-induced injury of rats' sciatic nerves based on apoptosis and oxidative stress.
Kang YANG ; Jun LIU ; Lin-Lan ZHOU ; Yun-Xiao LIU ; Chun-Lin DU ; Xiao-Zhi MEI ; Ying-Ru HUANG
China Journal of Chinese Materia Medica 2025;50(5):1351-1362
Cryopreservation is the primary technique for in vitro preservation of allogeneic tissue. However, its success is often hindered by factors such as low temperature, ischemia, and hypoxia. This study investigated the potential of Sini Decoction, known for its antioxidant and anti-apoptotic properties, to reduce cryopreservation-induced injury in rats' sciatic nerves. Sini Decoction was prepared according to the Chinese Pharmacopoeia, and its cytotoxicity on Rsc96 cells was assessed by using the CCK-8 method. Sini Decoction at concentrations of 4, 8, and 16 mg·mL~(-1), termed as low-(SL), medium-(SM), and high-(SH) doses group, was used for cryopreservation of rats' sciatic nerves. A normal control(NC) group and a fresh nerve control(fresh) group were set. Flow cytometry and TUNEL staining were used to detect the apoptosis of neural tissue cells after cryopreservation. Western blot was used to detect the expression of apoptosis-related proteins(Bcl-2, Bax, caspase-3, and caspase-8) and nerve regeneration proteins(NGF and BDNF) in vitro after cryopreservation. Oxidative damage of neural tissue after cryopreservation was evaluated by measuring levels of GSH, SOD, MDA, ROS, and ATP. Cryopreserved nerves were then used for allogeneic transplantation. One week after transplantation, CD4~+ and CD8~+ fluorescent double staining assessed inflammatory cell invasion in the transplanted nerve segment, and ELISA evaluated the expression of serum inflammatory factors(IL-1, IFN-γ, and TNF-α) in recipients. Twenty weeks after transplantation, electrophysiology and NF200 neurofilament staining were used to evaluate nerve regeneration. RESULTS:: showed that Sini Decoction at concentrations of below 32 mg·mL~(-1) exhibited no cytotoxicity to Rsc96 cells. During in vitro nerve cryopreservation, Sini Decoction significantly reduced cell apoptosis, ROS, and MDA production compared to the NC group. In the SH group, the protein expression of NGF and BDNF in vitro, as well as ATP, SOD, and GSH production, were significantly increased. In the rejection reaction one week after transplantation, compared to the fresh nerve transplantation group, the SL and SM groups showed reduced CD4~+ and CD8~+ T cell invasion in the transplanted nerve segment and down-regulated IL-1, IFN-γ, and TNF-α expression in recipient serum. Twenty weeks after transplantation, the electrophysiological test results of CMAP, NCV, and NF200 neurofilament protein fluorescent staining in the SM and SH groups were superior to those in the NC and fresh groups. These findings indicate that Sini Decoction offers protective benefits in the cryopreservation of rats' sciatic nerves and holds significant potential for the in vitro preservation of tissue and organs.
Animals
;
Apoptosis/drug effects*
;
Rats
;
Oxidative Stress/drug effects*
;
Sciatic Nerve/cytology*
;
Cryopreservation
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Rats, Sprague-Dawley
;
Protective Agents/pharmacology*
3.Protective mechanism of Chaihu Shugan San against CORT-induced damage in PC12 cells based on mitochondrial dynamics.
Ling-Yuan ZHANG ; Qi-Qi ZHENG ; Jia-Li SHI ; Pei-Fang WANG ; Jia-Li LU ; Jian-Ying SHEN
China Journal of Chinese Materia Medica 2025;50(16):4546-4554
In this report, the protective effect and molecular mechanism of Chaihu Shugan San-containing serum on corticosterone(CORT)-induced mitochondrial damage in pheochromocytoma(PC12) cells was studied based on CORT-induced rat PC12 cell model. The cultured cells were divided into five groups: blank control group, CORT group(400 μmol·L~(-1) CORT), Chaihu Shugan San-containing serum group(400 μmol·L~(-1) CORT + 10% Chaihu Shugan San-containing serum), control serum group(400 μmol·L~(-1) CORT + 10% control serum), and fluoxetine group(400 μmol·L~(-1) CORT + 10% fluoxetine-containing serum). The study was carried out by cell activity detection, mitochondrial morphology observation, membrane potential measurement, energy metabolism analysis, and mitochondrial dynamics-related protein detection. The results showed that CORT treatment significantly reduced the survival rate of PC12 cells, altered mitochondrial morphology, and decreased mitochondrial membrane potential and adenosine triphosphate(ATP) synthetic rate. Both Chaihu Shugan San-and fluoxetine-containing serum significantly increased the survival rate of CORT-treated PC12 cells and the ATP synthetic rate in the mitochondria. Unlike fluoxetine, Chaihu Shugan San-containing serum significantly inhibited the decrease in mitochondrial membrane potential caused by CORT and increased the oxygen consumption rate(OCR) values of both mitochondrial maximum respiration and reserve respiration capacity. Western blot analysis showed that CORT induced upregulated protein expressions of dynamin-related protein 1(Drp1) and peroxisome proliferator-activated receptor gamma co-activator 1α(PGC-1α) in PC12 cells and specific protein expression of optic atrophy protein 1(OPA1), yet it repressed the protein expressions of silent information regulator 1(SIRT1) and mitochondrial fusion protein 1(Mfn1) in PC12 cells. Both Chaihu Shugan San-and fluoxetine-containing serum significantly inhibited the protein expression of Drp1. However, only Chaihu Shugan San-containing serum could significantly inhibit the CORT-induced upregulation protein of PGC-1α. RESULTS:: herein suggest that Chaihu Shugan San-containing serum can alleviate CORT-induced damage in PC12 cells, which may be related to the mitochondrial fragmentation/lipid peroxidation protection by Drp1 inhibition, as well as mitochondrial dynamics and energy metabolism mediated by PGC-1α/SIRT1 signaling pathway.
Animals
;
PC12 Cells
;
Rats
;
Mitochondrial Dynamics/drug effects*
;
Mitochondria/metabolism*
;
Corticosterone/adverse effects*
;
Membrane Potential, Mitochondrial/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Protective Agents/pharmacology*
;
Cell Survival/drug effects*
4.Discovery of bioactive polycyclic polyprenylated acylphloroglucinol from Hypericum patulum that protects against hepatic ischemia/reperfusion injury.
Bo TAO ; Xiangli ZHAO ; Zhengyi SHI ; Jie LI ; Yulin DUAN ; Xiaosheng TAN ; Gang CHEN ; Changxing QI ; Yonghui ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(9):1104-1110
Hepatic ischemia/reperfusion injury (IRI) remains a critical complication contributing to graft dysfunction following liver surgery. As part of an ongoing search for hepatoprotective natural products, five previously unreported homoadamantane-type polycyclic polyprenylated acylphloroglucinols (PPAPs), named hyperhomanoons A-E (1-5), and one known analog, hypersampsone O (6), were isolated from Hypericum patulum. Among these, compound 6 demonstrated potent protective effects against CoCl₂-induced hypoxic injury in hepatocytes. Furthermore, in a murine model of hepatic IRI induced by vascular occlusion, pretreatment with 6 markedly alleviated liver damage and reduced hepatocyte apoptosis. This study is the first to identify PPAPs as promising scaffolds for the development of therapeutic agents targeting hepatic IRI, underscoring their potential as lead compounds in drug discovery efforts for ischemic liver diseases.
Reperfusion Injury/prevention & control*
;
Animals
;
Hypericum/chemistry*
;
Phloroglucinol/administration & dosage*
;
Mice
;
Humans
;
Male
;
Liver/blood supply*
;
Apoptosis/drug effects*
;
Molecular Structure
;
Protective Agents/pharmacology*
;
Hepatocytes/drug effects*
;
Mice, Inbred C57BL
;
Liver Diseases/drug therapy*
5.Hepatoprotective Effect of Camel Thorn Polyphenols in Concanavalin A-Induced Hepatitis in Mice.
Nageh Ahmed EL-MAHDY ; Thanaa Ahmed EL-MASRY ; Ahmed Mahmoud EL-TARAHONY ; Fatemah A ALHERZ ; Enass Youssef OSMAN
Chinese journal of integrative medicine 2024;30(12):1090-1100
OBJECTIVES:
To explore the prophylactic and therapeutic effects of Alhagi maurorum ethanolic extract (AME) in concanavalin A (Con A)-induced hepatitis (CIH) as well as possible underlying mechanisms.
METHODS:
Polyphenols in AME were characterized using high performance liquid chromatography (HPLC). Swiss albino mice were divided into 4 groups. Normal group received intravenous phosphate-buffered saline (PBS); Con A group received 40 mg/kg intravenous Con A. Prophylaxis group administered 300 mg/(kg·d) AME orally for 5 days before Con A intervention. Treatment group received intravenous Con A then administered 300 mg/kg AME at 30 min and 3 h after Con A intervention. After 24 h of Con A injection, hepatic injury, oxidative stress, and inflammatory mediators were assessed. Histopathological examination and markers of apoptosis, inflammation, and CD4+ cell infiltration were also investigated.
RESULTS:
HPLC analysis revealed that AME contains abundant polyphenols with pharmacological constituents, such as ellagic acid, gallic acid, ferulic acid, methylgallate, and naringenin. AME alleviated Con A-induced hepatic injury, as manifested by a significant reduction in alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase (P<0.01). Additionally, the antioxidant effect of AME was revealed by a significant reduction in oxidative stress markers (nitric oxide and malondialdehyde) and restored glutathione (P<0.01). The levels of proinflammatory cytokines (tumor necrosis factor-α, interferon-γ, and interleukin-6) and c-Jun N-terminal kinase (JNK) activity were reduced (P<0.01). Histopathological examination of liver tissue showed that AME significantly ameliorated necrotic and inflammatory lesions induced by Con A (P<0.01). Moreover, AME reduced the expression of nuclear factor kappa B, pro-apoptotic protein (Bax), caspase-3, and CD4+ T cell hepatic infiltration (P<0.01). The expression of anti-apoptotic protein Bcl-2 was increased (P<0.01).
CONCLUSION
AME has hepatoprotective and ameliorative effects in CIH mice. These beneficial effects are likely due to the anti-inflammatory, antioxidant, and anti-apoptotic effects of the clinically important polyphenolic content. AME could be a novel and promising hepatoprotective agent for managing immune-mediated hepatitis.
Animals
;
Concanavalin A
;
Mice
;
Polyphenols/pharmacology*
;
Liver/drug effects*
;
Plant Extracts/therapeutic use*
;
Camelus
;
Oxidative Stress/drug effects*
;
Male
;
Protective Agents/pharmacology*
;
Chemical and Drug Induced Liver Injury/prevention & control*
;
Apoptosis/drug effects*
;
Hepatitis/pathology*
;
Antioxidants/pharmacology*
;
CD4-Positive T-Lymphocytes/drug effects*
;
Inflammation Mediators/metabolism*
6.Human Serum-derived Extracellular Vesicles Protect A549 from PM
Qiu Lian ZHOU ; Yu Zheng BAI ; Juan GAO ; Yi DUAN ; Yi Cheng LYU ; Long Fei GUAN ; Kenneth ELKIN ; Yu Ling XIE ; Zheng JIAO ; Hong Yun WANG
Biomedical and Environmental Sciences 2021;34(1):40-49
Objective:
Epidemiological studies reveal that exposure to fine particulate matter (aerodynamic diameter ≤ 2.5 μm, PM
Methods:
EVs were isolated from the serum of healthy subjects, quantified
Results:
PM
Conclusions
EVs treatment promotes cell survival and attenuates PM
A549 Cells
;
Air Pollutants/toxicity*
;
Apoptosis/drug effects*
;
Cell Survival/drug effects*
;
Extracellular Vesicles
;
Humans
;
Male
;
Middle Aged
;
Particulate Matter/toxicity*
;
Protective Agents/pharmacology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Serum
8.Toll-like Receptor Agonists in Radiation Protection.
Jiao GUO ; Hai Yu YANG ; Wei LONG
Acta Academiae Medicinae Sinicae 2020;42(6):805-809
Ionizing radiation causes the massive apoptosis of human tissue cells,leading to dysfunction of the gastrointestinal tract and hematopoietic system.Thus,high-efficiency,low-toxicity radiation protection drugs are urgently needed.Toll-like receptor agonists have been developed based on the anti-apoptotic mechanism of tumor cells in recent years,which exert their radioprotective effects by activating downstream pathways,mainly nuclear factor-κB.Here we elucidate several agonists of Toll-like receptors involved in radiation protection,with an attempt to inform the research and development of new radiation protection agents.
Apoptosis
;
Humans
;
NF-kappa B
;
Radiation Protection
;
Radiation, Ionizing
;
Radiation-Protective Agents/pharmacology*
;
Toll-Like Receptors/agonists*
9.Pilea umbrosa ameliorate CCl induced hepatic injuries by regulating endoplasmic reticulum stress, pro-inflammatory and fibrosis genes in rat.
Irum NAZ ; Muhammad Rashid KHAN ; Jawaid Ahmed ZAI ; Riffat BATOOL ; Zartash ZAHRA ; Aemin TAHIR
Environmental Health and Preventive Medicine 2020;25(1):53-53
BACKGROUND:
Pilea umbrosa (Urticaceae) is used by local communities (district Abbotabad) for liver disorders, as anticancer, in rheumatism and in skin disorders.
METHODS:
Methanol extract of P. umbrosa (PUM) was investigated for the presence of polyphenolic constituents by HPLC-DAD analysis. PUM (150 mg/kg and 300 mg/kg) was administered on alternate days for eight weeks in rats exposed with carbon tetrachloride (CCl). Serum analysis was performed for liver function tests while in liver tissues level of antioxidant enzymes and biochemical markers were also studied. In addition, semi quantitative estimation of antioxidant genes, endoplasmic reticulum (ER) induced stress markers, pro-inflammatory cytokines and fibrosis related genes were carried out on liver tissues by RT-PCR analysis. Liver tissues were also studied for histopathological injuries.
RESULTS:
Level of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and glutathione (GSH) decreased (p < 0.05) whereas level of thiobarbituric acid reactive substance (TBARS), HO and nitrite increased in liver tissues of CCl treated rat. Likewise increase in the level of serum markers; alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and total bilirubin was observed. Moreover, CCl caused many fold increase in expression of ER stress markers; glucose regulated protein (GRP-78), x-box binding protein1-total (XBP-1 t), x-box binding protein1-unspliced (XBP-1 u) and x-box binding protein1-spliced (XBP-1 s). The level of inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) was aggregated whereas suppressed the level of antioxidant enzymes; γ-glutamylcysteine ligase (GCLC), protein disulfide isomerase (PDI) and nuclear erythroid 2 p45-related factor 2 (Nrf-2). Additionally, level of fibrosis markers; transforming growth factor-β (TGF-β), Smad-3 and collagen type 1 (Col1-α) increased with CCl induced liver toxicity. Histopathological scrutiny depicted damaged liver cells, neutrophils infiltration and dilated sinusoids in CCl intoxicated rats. PUM was enriched with rutin, catechin, caffeic acid and apigenin as evidenced by HPLC analysis. Simultaneous administration of PUM and CCl in rats retrieved the normal expression of these markers and prevented hepatic injuries.
CONCLUSION
Collectively these results suggest that PUM constituted of strong antioxidant chemicals and could be a potential therapeutic agent for stress related liver disorders.
Animals
;
Carbon Tetrachloride
;
adverse effects
;
Chemical and Drug Induced Liver Injury
;
drug therapy
;
etiology
;
pathology
;
Endoplasmic Reticulum Stress
;
drug effects
;
Fibrosis
;
drug therapy
;
genetics
;
Inflammation
;
drug therapy
;
genetics
;
Liver
;
drug effects
;
enzymology
;
metabolism
;
Male
;
Protective Agents
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Urticaceae
;
chemistry

Result Analysis
Print
Save
E-mail