1.LGR5 interacts with HSP90AB1 to mediate enzalutamide resistance by activating the WNT/β-catenin/AR axis in prostate cancer.
Ze GAO ; Zhi XIONG ; Yiran TAO ; Qiong WANG ; Kaixuan GUO ; Kewei XU ; Hai HUANG
Chinese Medical Journal 2025;138(23):3184-3194
BACKGROUND:
Enzalutamide, a second-generation androgen receptor (AR) pathway inhibitor, is widely used in the treatment of castration-resistant prostate cancer. However, after a period of enzalutamide treatment, patients inevitably develop drug resistance. In this study, we characterized leucine-rich repeated G-protein-coupled receptor 5 (LGR5) and explored its potential therapeutic value in prostate cancer.
METHODS:
A total of 142 pairs of tumor and adjacent formalin-fixed paraf-fin-embedded tissue samples from patients with prostate cancer were collected from the Pathology Department at Sun Yat-sen Memorial Hos-pital. LGR5 was screened by sequencing data of enzalutamide-resistant cell lines combined with sequencing data of lesions with different Gleason scores from the same patients. The biological function of LGR5 and its effect on enzalutamide resistance were investigated in vitro and in vivo . Glutathione-S-transferase (GST) pull-down, coimmunoprecipitation, Western blotting, and immunofluorescence assays were used to explore the specific binding mechanism of LGR5 and related pathway changes.
RESULTS:
LGR5 was significantly upregulated in prostate cancer and negatively correlated with poor patient prognosis. Overexpression of LGR5 promoted the malignant progression of prostate cancer and reduced sensitivity to enzalutamide in vitro and in vivo . LGR5 promoted the phosphorylation of glycogen synthase kinase-3β (GSK-3β) by binding heat shock protein 90,000 alpha B1 (HSP90AB1) and mediated the activation of the Wingless/integrated (WNT)/β-catenin signaling pathway. The increased β-catenin in the cytoplasm entered the nucleus and bound to the nuclear AR, promoting the transcription level of AR, which led to the enhanced tolerance of prostate cancer to enzalutamide. Reducing HSP90AB1 binding to LGR5 significantly enhanced sensitivity to enzalutamide.
CONCLUSIONS
LGR5 directly binds to HSP90AB1 and mediates GSK-3β phosphorylation, promoting AR expression by regulating the WNT/β-catenin signaling pathway, thereby conferring resistance to enzalutamide treatment in prostate cancer.
Male
;
Humans
;
Phenylthiohydantoin/pharmacology*
;
Benzamides
;
Receptors, G-Protein-Coupled/genetics*
;
Nitriles
;
Cell Line, Tumor
;
HSP90 Heat-Shock Proteins/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
Prostatic Neoplasms/drug therapy*
;
beta Catenin/metabolism*
;
Receptors, Androgen/genetics*
;
Animals
;
Mice
;
Wnt Signaling Pathway/physiology*
2.Regulation of testosterone synthesis by circadian clock genes and its research progress in male diseases.
Gang NING ; Bo-Nan LI ; Hui WU ; Ruo-Bing SHI ; A-Jian PENG ; Hao-Yu WANG ; Xing ZHOU
Asian Journal of Andrology 2025;27(5):564-573
The circadian clock is an important internal time regulatory system for a range of physiological and behavioral rhythms within living organisms. Testosterone, as one of the most critical sex hormones, is essential for the development of the reproductive system, maintenance of reproductive function, and the overall health of males. The secretion of testosterone in mammals is characterized by distinct circadian rhythms and is closely associated with the regulation of circadian clock genes. Here we review the central and peripheral regulatory mechanisms underlying the influence of circadian clock genes upon testosterone synthesis. We also examined the specific effects of these genes on the occurrence, development, and treatment of common male diseases, including late-onset hypogonadism, erectile dysfunction, male infertility, and prostate cancer.
Testosterone/metabolism*
;
Humans
;
Male
;
Circadian Clocks/genetics*
;
Circadian Rhythm Signaling Peptides and Proteins/metabolism*
;
Circadian Rhythm/physiology*
;
Hypogonadism/metabolism*
;
Erectile Dysfunction/metabolism*
;
Infertility, Male/metabolism*
;
Prostatic Neoplasms/metabolism*
;
Men's Health
3.Relationship between sterol carrier protein 2 gene and prostate cancer: Based on single-cell RNA sequencing combined with Mendelian randomization.
Jia-Xin NING ; Shu-Hang LUO ; Hao-Ran WANG ; Hui-Min HOU ; Ming LIU
National Journal of Andrology 2025;31(5):403-411
Objective: To investigate the relationship between the lipid metabolism-related gene sterol carrier protein 2(SCP2) and prostate cancer (PCa) from a multi-omics perspective using single-cell transcriptomes combined with Mendelian randomization. Methods: Single-cell transcriptome data of benign and malignant prostate tissues were obtained from GSE120716, GSE157703 and GSE141445 datasets, respectively. Integration, quality control and annotation were performed on the data to categorize the epithelial cells into high and low SCP2 expression groups, followed by further differential and trajectory analyses. Single nucleotide polymorphism (SNP) data for SCP2 expression quantitative trait loci (eQTL) were subsequently downloaded from Genotype-Tissue Expression (GTEx) and investigated from the PCa Society Cancer-Related Genomic Alteration Panel for the Investigation of Cancer-Related Alterations (PRACTICAL) to obtain PCa outcome data for Mendelian randomization analysis to validate the causal relationship between SCP2 and PCa. Results: High SCP2-expressing epithelial cells had higher energy metabolism and proliferation capacity with low immunotherapy response and metastatic tendency. Trajectory analysis showed that epithelial cells with high SCP2 expression may have a higher degree of malignancy, and SCP2 may be a key marker gene for differentiation of malignant epithelial cells in the prostate. Further Mendelian randomization results showed a significant causal relationship between SCP2 and PCa development (OR=1.045, 95% CI: 1.010 -1.083, P=0.011). Conclusion: By combining single-cell transcriptome and Mendelian randomization, the role of the lipid metabolism-related gene SCP2 in PCa development has been confirmed, and new targets and therapeutic directions for PCa treatment have been provided.
Humans
;
Prostatic Neoplasms/genetics*
;
Male
;
Mendelian Randomization Analysis
;
Polymorphism, Single Nucleotide
;
Quantitative Trait Loci
;
Single-Cell Analysis
;
Sequence Analysis, RNA
;
Carrier Proteins/genetics*
;
Transcriptome
;
Lipid Metabolism
4.RNA-binding protein ELAVL1 regulates SOX4 stability and promotes hormone-sensitive prostate cancer proliferation through m6A-dependent regulation.
Sha-Sha MIN ; Zhong-Lin CAI ; Yan-Ting SHEN ; Zhong WANG
National Journal of Andrology 2025;31(9):791-799
OBJECTIVE:
To investigate the expression of RNA binding protein ELAVL1 in prostate cancer (PCa), especially hormone-sensitive prostate cancer (HSPC), and its relationship with tumor proliferation. This study further aims to reveal the molecular mechanism by which ELAVL1 promotes HSPC proliferation by stabilizing SOX4 mRNA in an m6A-dependent manner.
METHODS:
The expression of ELAVL1 in PCa tissues and its relationship with prognosis were analyzed in the Cancer Genome Atlas (TCGA) database, and the differences in HSPC and hormone-resistant prostate cancer (HRPC) were compared. And its relationship with prognosis were analyzed in the Cancer Genome Atlas (TCGA) database, and the differences in HSPC and hormone-resistant prostate cancer (HRPC) were compared. Western blot was used to detect ELAVL1 protein expression in PCa cell lines. After ELAVL1 knockdown by siRNA, cell proliferation was evaluated using CCK-8 assays, and changes in downstream target genes were detected by RT-qPCR. Tumor xenograft experiments in nude mice were performed to further assess the impact of ELAVL1 on tumor growth. The interaction between ELAVL1 and SOX4 mRNA was verified by RIP-seq. And the mRNA and protein levels of SOX4 after knockdown of ELAVL1 were detected by RT-qPCR and Western blot, respectively. CCK-8 was used to evaluate the effect of SOX4 knockdown on cell proliferation. MeRIP-qPCR was used to detect the m6A modification level of SOX4 and the effect of knocking down METTL3. RNA pull-down experiments verified the interaction between SOX4 RNA fragments and ELAVL1 protein. RNA stability experiments evaluated the effect of ELAVL1 knockdown on SOX4 mRNA stability.
RESULTS:
The expression of ELAVL1 in PCa cells was higher than that in normal prostate epithelial cells. The prognosis of patients with high expression of ELAVL1 was significantly worse than that of patients with low expression. In the GSE32269 dataset, the expression level of ELAVL1 in HSPC was significantly higher than that in HRPC. After knocking down of ELAVL1 in LNCaP and VCaP cells, CCK-8 experiments showed that the cell proliferation ability was significantly affected after knocking down ELAVL1, and overexpressed ELAVL1 promoted the proliferation of HSPC cells. The results of in vivo studies showed that knockdown of ELAVL1 significantly inhibited the tumorigenic capacity of LNCaP cells and resulted in a marked reduction in xenograft tumor mass. The levels of SOX4 mRNA and protein in LNCaP and VCaP cells were significantly higher than those in normal prostate epithelial cells RWPE-1. RIP-qPCR confirmed the interaction between ELAVL1 protein and SOX4 mRNA. After knocking down of ELAVL1, the expression levels of SOX4 mRNA and protein were significantly decreased. After knocking down of SOX4, the proliferation ability of LNCaP and VCaP cells was significantly inhibited.
CONCLUSION
ELAVL1 is highly expressed in HSPC. High expression of ELAVL1 is associated with the proliferation of HSPC. SOX4 is a downstream molecule of ELAVL1 which promotes the proliferation of HSPC. ELAVL1 enhances the stability of SOX4 mRNA through an m6A-dependent mechanism.
Male
;
Humans
;
SOXC Transcription Factors/genetics*
;
ELAV-Like Protein 1/metabolism*
;
Cell Proliferation
;
Prostatic Neoplasms/genetics*
;
Animals
;
Mice, Nude
;
Cell Line, Tumor
;
Mice
;
Gene Expression Regulation, Neoplastic
;
RNA, Messenger/metabolism*
;
Prognosis
5.Effects of Xihuang Pills on angiogenesis, invasion, and metastasis of p rostate cancer based on FAK/Src/ERK pathway.
Yan LONG ; Xin-Jun LUO ; Bo ZOU ; Xin-Jun DAI ; Fang-Zhi FU ; Biao WANG ; Li-Tong WU ; Yong-Rong WU ; Qing ZHOU ; Xue-Fei TIAN
China Journal of Chinese Materia Medica 2024;49(23):6378-6388
Based on the focal adhesion kinase(FAK)/steroid receptor coactivator(Src)/extracellular regulated protein kinase(ERK) pathway, this study explored the effects of Xihuang Pills on angiogenesis, invasion, and metastasis in prostate cancer. Liquid chromatography-tandem mass spectrometry(LC-MS/MS) was used to analyze and identify the active ingredients of Xihuang Pills. Bioinformatics techniques, including R language and Perl programs, were employed to analyze the interactions between prostate cancer-related targets and the potential targets of Xihuang Pills. A subcutaneous transplantation tumor model of prostate cancer was established in nude mice using PC3 cells to verify the efficacy and molecular mechanisms of Xihuang Pills. In vitro cellular experiments, including cell proliferation assays(CCK-8), Transwell assays, scratch assays, real-time quantitative reverse transcription PCR, and Western blot, were used to detect the effects of Xihuang Pills on the proliferation, invasion, and migration of prostate cancer cells, as well as on FAK/Src/ERK pathway-related targets. LC-MS/MS identified 99 active ingredients in Xihuang Pills, including gallic acid, gentisic acid, artemisinin, corilagin, phenylbutazone-glucoside, thujic acid, and arecoic acid B. Network pharmacological analysis of the active ingredients in Xihuang Pills revealed that the FAK/Src/ERK signaling pathway was a key pathway in its anti-prostate cancer effects. In vivo and in vitro experiments confirmed that Xihuang Pills significantly inhibited the proliferation, invasion, and migration of PC3 and LNCaP cells, suppressed the growth of PC3 subcutaneous tumors, and reduced the protein expression levels related to the FAK/Src/ERK signaling pathway. In conclusion, the inhibition of angiogenesis, invasion, and metastasis by regulating the FAK/Src/ERK pathway is one of the mechanisms by which Xihuang Pills exert anti-prostate cancer effects.
Humans
;
Male
;
Prostatic Neoplasms/enzymology*
;
Drugs, Chinese Herbal/chemistry*
;
Animals
;
Mice
;
Cell Proliferation/drug effects*
;
Mice, Nude
;
Cell Movement/drug effects*
;
Cell Line, Tumor
;
src-Family Kinases/genetics*
;
Neovascularization, Pathologic/metabolism*
;
Neoplasm Metastasis
;
Neoplasm Invasiveness
;
Focal Adhesion Kinase 1/genetics*
;
Extracellular Signal-Regulated MAP Kinases/genetics*
;
MAP Kinase Signaling System/drug effects*
;
Focal Adhesion Protein-Tyrosine Kinases/genetics*
;
Signal Transduction/drug effects*
;
Angiogenesis
6.Molecular diagnostics of prostate cancer: impact of molecular tests.
Asian Journal of Andrology 2024;26(6):562-566
Prostate cancer (PCa) is the second leading cause of cancer-related death among men. Prostate-specific antigen (PSA) testing is used in screening programs for early detection with a consequent reduction of PCa-specific mortality at the cost of overdiagnosis and overtreatment of the nonaggressive PCa. Recently, several assays have been commercially developed to implement PCa diagnosis, but they have not been included in both screening and diagnosis of PCa. This review aims to describe the actual and novel commercially available molecular biomarkers that can be used in PCa management to implement and tailor the screening and diagnosis of PCa.
Humans
;
Prostatic Neoplasms/genetics*
;
Male
;
Biomarkers, Tumor/genetics*
;
Early Detection of Cancer/methods*
;
Prostate-Specific Antigen/blood*
;
Molecular Diagnostic Techniques/methods*
;
Glutamate Carboxypeptidase II/metabolism*
7.Mismatch repair gene germline mutations in patients with prostate cancer.
Bangwei FANG ; Yu WEI ; Jian PAN ; Tingwei ZHANG ; Dingwei YE ; Yao ZHU
Journal of Zhejiang University. Medical sciences 2023;52(2):133-138
OBJECTIVES:
To investigate the prevalence of pathogenic germline mutations of mismatch repair (MMR) genes in prostate cancer patients and its relationship with clinicopathological characteristics.
METHODS:
Germline sequencing data of 855 prostate cancer patients admitted in Fudan University Shanghai Cancer Center from 2018 to 2022 were retrospectively analyzed. The pathogenicity of mutations was assessed according to the American College of Medical Genetics and Genomics (ACMG) standard guideline, Clinvar and Intervar databases. The clinicopathological characteristics and responses to castration treatment were compared among patients with MMR gene mutation (MMR+ group), patients with DNA damage repair (DDR) gene germline pathogenic mutation without MMR gene (DDR+MMR- group) and patients without DDR gene germline pathogenic mutation (DDR- group).
RESULTS:
Thirteen (1.52%) MMR+ patients were identified in 855 prostate cancer patients, including 1 case with MLH1 gene mutation, 6 cases with MSH2 gene mutation, 4 cases with MSH6 gene mutation and 2 cases with PMS2 gene mutation. 105 (11.9%) patients were identified as DDR gene positive (except MMR gene), and 737 (86.2%) patients were DDR gene negative. Compared with DDR- group, MMR+ group had lower age of onset (P<0.05) and initial prostate-specific antigen (PSA) (P<0.01), while no significant differences were found between the two groups in Gleason score and TMN staging (both P>0.05). The median time to castration resistance was 8 months (95%CI: 6 months-not achieved), 16 months (95%CI: 12-32 months) and 24 months (95%CI: 21-27 months) for MMR+ group, DDR+MMR- group and DDR- group, respectively. The time to castration resistance in MMR+ group was significantly shorter than that in DDR+MMR- group and DDR- group (both P<0.01), while there was no significant difference between DDR+MMR- group and DDR- group (P>0.05).
CONCLUSIONS
MMR gene mutation testing is recommended for prostate cancer patients with early onset, low initial PSA, metastasis or early resistance to castration therapy.
Male
;
Humans
;
Prostate-Specific Antigen/genetics*
;
Germ-Line Mutation
;
Retrospective Studies
;
DNA Mismatch Repair/genetics*
;
DNA-Binding Proteins/metabolism*
;
China
;
Prostatic Neoplasms/pathology*
8.LncRNA GAS5 enhances tumor stem cell-like medicated sensitivity of paclitaxel and inhibits epithelial-to-mesenchymal transition by targeting the miR-18a-5p/STK4 pathway in prostate cancer.
Ting-Ting LU ; Xia TAO ; Hua-Lei LI ; Ling GAI ; Hua HUANG ; Feng LI
Asian Journal of Andrology 2022;24(6):643-652
The onset of prostate cancer (PCa) is often hidden, and recurrence and metastasis are more likely to occur due to chemotherapy resistance. Herein, we identified downregulated long noncoding RNA (lncRNA) growth arrest-specific 5 (GAS5) in PCa that was associated with metastasis and paclitaxel resistance. GAS5 acted as a tumor suppressor in suppressing the proliferation and metastasis of paclitaxel-resistant PCa cells. GAS5 overexpression in vivo inhibited the tumor growth of xenografts and elevated PCa sensitivity to paclitaxel. Combination of GAS5 and paclitaxel treatment showed great potential in PCa treatment. Moreover, mechanistic analysis revealed a novel regulatory network of GAS5/miR-18a-5p/serine/threonine kinase 4 (STK4) that inhibits epithelial-to-mesenchymal transition (EMT) and enhances tumor stem cell-like-mediated sensitivity to paclitaxel in PCa. These findings provide a novel direction for the development of a potential adjunct to cancer chemotherapy that aims to improve the sensitivity of chemotherapy drugs in PCa.
Humans
;
Male
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
;
MicroRNAs/metabolism*
;
Neoplastic Stem Cells
;
Paclitaxel/therapeutic use*
;
Prostatic Neoplasms/genetics*
;
Protein Serine-Threonine Kinases/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Epithelial-Mesenchymal Transition
9.The transcription factor NF-kB1 regulates miR-195 expression in prostate cancer.
Chun-Hui LIU ; Ya-Li WANG ; Kai LU ; Lei ZHANG ; Guang-Yuan ZHANG ; Bin XU ; Shu-Qiu CHEN ; Ming CHEN
National Journal of Andrology 2020;26(10):875-880
Objective:
To investigate the regulatory effect of the transcription factor NF-kB1 on the expression of miR-195 in prostate cancer (PCa).
METHODS:
We analyzed the possibility of NF-kB1 binding to the miR-195 promoter and the expression of NF-kB1 in PCa using the JASPAR and Oncomine databases, respectively, and determined the expressions of NF-kB1 and miR-195 in PCa cells by real-time quantitative PCR after inhibiting the former by interfering RNA targeting NF-kB1. We detected the activity of the luciferase reporter gene after constructing its gene plasmid in the miR-195 promoter region and having it co-transfected with the NF-kB1 plasmid. Then we analyzed the correlation between the expressions of miR-195 and NF-kB1 in the prostate tissue.
RESULTS:
NF-kB1 was overexpressed in PCa. After inhibition of the expression of NF-kB1, that of miR-195 was increased in PC-3 and DU-145 cell lines, with a negative correlation between the NF-kB1 and miR-195 expressions in the PCa tissue. The results of luciferase reporter gene assay showed direct binding of NF-kB1 to the miR-195 promoter zone.
CONCLUSIONS
NF-kB1 regulates the expression of miR-195 in prostate cancer.
Cell Line, Tumor
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Male
;
MicroRNAs/genetics*
;
NF-kappa B p50 Subunit/metabolism*
;
Promoter Regions, Genetic
;
Prostatic Neoplasms/genetics*
;
Transcription Factors/metabolism*
10.MTBP regulates migration and invasion of prostate cancer cells .
Zhuoyu XIAO ; Mingkun CHEN ; Jiankun YANG ; Cheng YANG ; Xianyuan LÜ ; Hu TIAN ; Cundong LIU
Journal of Southern Medical University 2019;39(1):6-12
OBJECTIVE:
To investigate the role of MTBP in regulating the migration and invasion of human prostate cancer cells.
METHODS:
The baseline expressions of MTBP in 3 different human prostate cancer cells lines (22RV1, DU145 and Lncap) were detected using Western blotting. The cells were transfected with a small interfering RNA (siRNA) for MTBP knockdown or MTBP plasmid for MTBP overexpression, and 48 h later, the cells were examined for MTBP expression with Western blotting; the changes in the migration abilities of the cells were evaluated using wound healing assay and Transwell assay, and the cell invasiveness was assessed using Matrigel Transwell assay. The expression of E-cadherin protein, a marker of epithelial mesenchymal transition (EMT), was detected using Western blotting.
RESULTS:
MTBP expression was the highest in DU145 cells followed by Lncap cells, and was the lowest in 22RV1 cells, indicating a positive correlation of MTBP expression with the level of malignancy of human prostate cancer cells. Transfection of the cells with siRNA or MTBP plasmids efficiently lowered or enhanced the expressions of MTBP in human prostate cancer cells. Wound healing assay showed that inhibition of MTBP expression decreased the migration ability of the prostate cancer cells, and MTBP overexpression significantly promoted the migration of the cells ( < 0.01). Transwell assay showed that MTBP knockdown significantly lowered the migration and invasion ability of the cells, while MTBP overexpression markedly increased the number of migrating and invading cells ( < 0.01); Western blotting results showed that MTBP knockdown increased the expression of E-cadherin protein, and MTBP overexpression decreased E-cadherin expression in the prostate cancer cells.
CONCLUSIONS
MTBP overexpression promotes the migration and invasion of human prostate cancer cells possibly relation to the induction of EMT.
Antigens, CD
;
metabolism
;
Cadherins
;
metabolism
;
Carrier Proteins
;
genetics
;
metabolism
;
Cell Line, Tumor
;
Cell Movement
;
Epithelial-Mesenchymal Transition
;
Gene Expression Regulation, Neoplastic
;
Gene Knockdown Techniques
;
Humans
;
Male
;
Neoplasm Invasiveness
;
Prostatic Neoplasms
;
metabolism
;
pathology
;
RNA, Small Interfering
;
Transfection

Result Analysis
Print
Save
E-mail