1.Research progress on mechanism of Carthamus tinctorius in ischemic stroke therapy.
Jun-Ren CHEN ; Xiao-Fang XIE ; Xiao-Yu CAO ; Gang-Min LI ; Yan-Peng YIN ; Cheng PENG
China Journal of Chinese Materia Medica 2022;47(17):4574-4582
Carthamus tinctorius is proved potent in treating ischemic stroke. Flavonoids, such as safflower yellow, hydroxysafflor yellow A(HSYA), nicotiflorin, safflower yellow B, and kaempferol-3-O-rutinoside, are the main substance basis of C. tinctorius in the treatment of ischemic stroke, and HSYA is the research hotspot. Current studies have shown that C. tinctorius can prevent and treat ischemic stroke by reducing inflammation, oxidative stress, and endoplasmic reticulum stress, inhibiting neuronal apoptosis and platelet aggregation, as well as increasing blood flow. C. tinctorius can regulate the pathways including nuclear factor(NF)-κB, mitogen-activated protein kinase(MAPK), signal transducer and activator of transcription protein 3(STAT3), and NF-κB/NLR family pyrin domain containing 3(NLRP3), and inhibit the activation of cyclooxygenase-2(COX-2)/prostaglandin D2/D prostanoid receptor pathway to alleviate the inflammatory development during ischemic stroke. Additionally, C. tinctorius can relieve oxidative stress injury by inhibiting oxidation and nitrification, regulating free radicals, and mediating nitric oxide(NO)/inducible nitric oxide synthase(iNOS) signals. Furthermore, mediating the activation of Janus kinase 2(JAK2)/STAT3/suppressor of cytokine signaling 3(SOCS3) signaling pathway and phosphoinositide 3-kinase(PI3 K)/protein kinase B(Akt)/glycogen synthase kinase-3β(GSK3β) signaling pathway and regulating the release of matrix metalloproteinase(MMP) inhibitor/MMP are main ways that C. tinctorius inhibits neuronal apoptosis. In addition, C. tinctorius exerts the therapeutic effect on ischemic stroke by regulating autophagy and endoplasmic reticulum stress. The present study reviewed the molecular mechanisms of C. tinctorius in the treatment of ischemic stroke to provide references for the clinical application of C. tinctorius.
Carthamus tinctorius/chemistry*
;
Chalcone/therapeutic use*
;
Cyclooxygenase 2/metabolism*
;
Cytokines/metabolism*
;
Flavonoids/therapeutic use*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Humans
;
Ischemic Stroke/drug therapy*
;
Janus Kinase 2/metabolism*
;
Mitogen-Activated Protein Kinases/metabolism*
;
NF-kappa B/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Nitric Oxide/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Phosphatidylinositol 3-Kinase/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Prostaglandin D2
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Quinones/pharmacology*
2.Effect of 15-Deoxy-Δ-prostaglandin JNanocapsules on Inflammation and Bone Regeneration in a Rat Bone Defect Model.
Qi TANG ; Li-Li CHEN ; Fen WEI ; Wei-Lian SUN ; Li-Hong LEI ; Pei-Hui DING ; Jing-Yi TAN ; Xiao-Tao CHEN ; Yan-Min WU
Chinese Medical Journal 2017;130(3):347-356
BACKGROUND15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), one of the major metabolites from prostaglandin D2 in arachidonic acid metabolic pathway, has potential anti-inflammatory properties. The objective of this study was to explore the effects of 15d-PGJ2-loaded poly(D,L-lactide-co-glycolide) nanocapsules (15d-PGJ2-NC) on inflammatory responses and bone regeneration in local bone defect.
METHODSThe study was conducted on 96 Wistar rats from June 2014 to March 2016. Saline, unloaded nanoparticles, free 15d-PGJ2or 15d-PGJ2-NC, were delivered through a collagen vehicle inside surgically created transcortical defects in rat femurs. Interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) levels in the surrounding soft tissue were analyzed by Western blot and in the defect by quantitative real-time polymerase chain reaction over 14 days. Simultaneously, bone morphogenetic protein-6 (BMP-6) and platelet-derived growth factor-B (PDGF-B) messenger RNA (mRNA) in the defect were examined. New bone formation and EphrinB2 and osteoprotegerin (OPG) protein expression in the cortical defect were observed by Masson's Trichrome staining and immunohistochemistry over 28 days. Data were analyzed by one-way analysis of variance. Least-significant difference and Dunnett's T3 methods were used with a bilateral P< 0.05.
RESULTSApplication of l5d-PGJ2-NC (100 μg/ml) in the local bone defect significantly decreased IL-6, IL-1β, and TNF-α mRNA and protein, compared with saline-treated controls (P < 0.05). l5d-PGJ2-NC upregulated BMP-6 and PDGF-B mRNA (P < 0.05). New bone formation was observed in the cortical defect in l5d-PGJ2-NC-treated animals from 7th day onward (P < 0.001). Expression of EphrinB2 and OPG presented early on day 3 and persisted through day 28 in 15d-PGJ2-NC group (P < 0.05).
CONCLUSIONStable l5d-PGJ2-NC complexes were prepared that could attenuate IL-6, IL-1β, and TNF-α expression, while increasing new bone formation and growth factors related to bone regeneration.
Animals ; Bone Morphogenetic Protein 6 ; metabolism ; Bone Regeneration ; drug effects ; Inflammation ; drug therapy ; Interleukin-1beta ; metabolism ; Interleukin-6 ; metabolism ; Male ; Platelet-Derived Growth Factor ; metabolism ; Prostaglandin D2 ; analogs & derivatives ; therapeutic use ; Rats ; Rats, Wistar ; Tumor Necrosis Factor-alpha ; metabolism
3.Hair growth promoting effects of emodin in telogenic C57BL/6 mice.
Jung Min YON ; Seul Gi PARK ; Chunmei LIN ; Lee Wha GWON ; Jong Geol LEE ; In Jeoung BAEK ; Beom Jun LEE ; Young Won YUN ; Sang Yoon NAM
Korean Journal of Veterinary Research 2016;56(2):97-101
Emodin is an anthraquinone derivative from the roots of Rheum officinale Baill that possesses a variety of biological activities, including inhibition of 5α-reductase and prostaglandin D2. In this study, we investigated whether emodin promotes hair growth. After emodin was topically applied to the shaved dorsal skin of telogenic C57BL/6 N mice, the hair growth rate and morphological analysis were evaluated in dorsal skin for 15 days. After 13 days of treatment, minoxidil or emodin (0.01% or 0.1%)-treated groups showed remarkable regrowth of hairs relative to the vehicle control group. Scoring of the hair growth and rate of hair growth area for 15 days revealed that groups treated with minoxidil and 0.1% emodin were significantly higher than the vehicle control group. Histological examination revealed the emodin and minoxidil groups markedly recovered the number and morphology of hair follicles, including the subcutis depth, relative to the vehicle group. These results suggest that emodin has an excellent promoting effect in hair growth similar to that of minoxidil and might be useful for treatment of baldness or alopecia.
Alopecia
;
Animals
;
Emodin*
;
Hair Follicle
;
Hair*
;
Mice*
;
Minoxidil
;
Prostaglandin D2
;
Rheum
;
Skin
4.Effect of 15-Deoxy-△(12,14)-prostaglandin J2 on Expression of Macrophage Migration Inhibitory Factor in Mouse Monocyte/macrophage Cell Line J774A.1.
Wei-Yang LI ; Yu-Meng SHI ; Xin LIU ; Lin YANG ; Li-Ying L I
Acta Academiae Medicinae Sinicae 2016;38(3):247-252
Objective To investigate the effect of 15-Deoxy-△(12,14)-prostaglandin J2 (15 d-PGJ2) on the expression of macrophage migration inhibitory factor (MIF) and its underlying mechanism in J774A.1. Methods The murine monocyte/macrophage cell line J774A.1 were divided into six groups:lipopolysaccharide (LPS) group,incubated with 1 μg/ml LPS for 1 h;normal control group,incubated with PBS for 1 h;negative control group,incubated with 5 μmol/L 15 d-PGJ2 for 1 h;15 d-PGJ2 group,incubated with 5 μmol/L 15 d-PGJ2 for 1 h followed by 1 μg/ml LPS for 1 h;GW9662 group,incubated with 5 μmol/L 15 d-PGJ2 for 1 h following GW9662 10 μmol/L for 1 h,and then incubated with 1 μg/ml LPS for 1 h;and Vehicle group,control of GW9662,GW9662 was replaced by its solvent DMSO. The expression of MIF was detected via immunofluorescence and agarose gel electrophoresis. RT-qPCR and Western blotting were used to test whether 15 d-PGJ2 could regulate mRNA and protein expression of MIF in J774A.1 upon LPS challenge. The effect of peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist GW9662 on the regulation of MIF by 15 d-PGJ2 was observed. The effects of 15 d-PGJ2 on the nuclear translocation of PPAR-γ upon LPS challenge were detected via high content screening analysis. Results MIF DNA and protein expressions were detected in J774A.1. MIF mRNA expression was up-regulated (1.75±0.09,P=0.037) when challenged with LPS and 15 d-PGJ2 inhibited its upregulation (0.84±0.08,P=0.026) in J774A.1. The protein level was consistent with the mRNA level. PPAR-γ antagonist GW9662 reversed the effect of 15 d-PGJ2 (mRNA,1.48±0.06,P=0.016;protein,1.28). Furthermore,nuclear translocation of PPAR-γ was regulated by 15 d-PGJ2 in J774A.1 upon LPS challenge(1.39±0.02 vs. 1.01±0.03,P=0.003). Conclusion 15 d-PGJ2 may down-regulate the MIF expression in J774A.1 in a PPAR-γ-dependent manner.
Anilides
;
pharmacology
;
Animals
;
Cell Line
;
Intramolecular Oxidoreductases
;
metabolism
;
Lipopolysaccharides
;
Macrophage Migration-Inhibitory Factors
;
metabolism
;
Mice
;
Monocytes
;
drug effects
;
PPAR gamma
;
antagonists & inhibitors
;
Prostaglandin D2
;
analogs & derivatives
;
pharmacology
5.Imperatorin Suppresses Degranulation and Eicosanoid Generation in Activated Bone Marrow-Derived Mast Cells.
Kyu Tae JEONG ; Eujin LEE ; Na Young PARK ; Sun Gun KIM ; Hyo Hyun PARK ; Jiean LEE ; Youn Ju LEE ; Eunkyung LEE
Biomolecules & Therapeutics 2015;23(5):421-427
Imperatorin has been known to exert many biological functions including anti-inflammatory activity. In this study, we investigated the inhibitory effects of imperatorin on the production of inflammatory mediators in mouse bone marrow-derived mast cells (BMMC). Imperatorin inhibited degranulation and the generation of eicosanoids (leukotriene C4 (LTC4) and prostaglandin D2 (PGD2)) in IgE/antigen (Ag)-stimulated BMMC. To elucidate the molecular mechanism involved in this process, we investigated the effect of imperatorin on intracellular signaling in BMMC. Biochemical analyses of the IgE/Ag-mediated signaling pathway demonstrated that imperatorin dramatically attenuated degranulation and the production of 5-lipoxygenase-dependent LTC4 and cyclooxygenase-2-dependent PGD2 through the inhibition of intracellular calcium influx/phospholipase Cgamma1, cytosolic phospholipase A2/mitogen-activated protein kinases and/or nuclear factor-kappaB pathways in BMMC. These results suggest that the effects of imperatorin on inhibition of degranulation and eicosanoid generation through the suppression of multiple steps of IgE/Ag-mediated signaling pathways would be beneficial for the prevention of allergic inflammation.
Animals
;
Calcium
;
Cytosol
;
Eicosanoids
;
Inflammation
;
Leukotriene C4
;
Mast Cells*
;
Mice
;
Mitogen-Activated Protein Kinases
;
Phospholipases
;
Prostaglandin D2
;
Protein Kinases
6.Distinct Inflammatory Profiles in Atopic and Nonatopic Patients With Chronic Rhinosinustis Accompanied by Nasal Polyps in Western China.
Luo BA ; Jintao DU ; Feng LIU ; Fenglin YANG ; Miaomiao HAN ; Sixi LIU ; Ping LIN ; Huabin LI
Allergy, Asthma & Immunology Research 2015;7(4):346-358
PURPOSE: The role of systemic sensitization in the pathophysiology of chronic rhinosinusitis with nasal polyps (CRSwNP) remains elusive. This study sought to characterize the pattern of cytokines in polyp tissues from atopic and nonatopic patients with CRSwNP. METHODS: Atopic and nonatopic polyp and normal tissues were collected from 70 CRSwNP patients and 26 control subjects, respectively. The distribution of inflammatory cells (eosinophils, neutrophils, mast cells, etc.) were examined using immunohistochemistry, the mRNA levels of the transcription factors GATA-3, T-bet, RORc, and FOXP3 were determined using quantitative real-time polymerase chain reaction. The levels of inflammatory mediators (IFN-gamma, IL-5, IL-17A, etc.) in tissue homogenates were measured using enzyme-linked immunosorbent assay (ELISA). Moreover, the levels of inflammatory mediators in the supernatant of anti-IgE stimulated polyp tissues were measured using ELISA. RESULTS: Atopic CRSwNP patients were characterized by increased eosinophil accumulation, enhanced eosinophilic inflammation (elevated IL-5, ECP, and total IgE), and significantly increased GATA-3 mRNA levels (P<0.05), whereas both atopic and non-atopic CRSwNP patients showed decreased FOXP3 mRNA expression (P<0.05). After addition of anti-IgE stimulation, atopic CRSwNP patients produced more IL-5, IL-2, IL-10, IL-17A, and PGD2 in the supernatant of stimulated polyp tissues than nonatopic CRSwNP patients did. CONCLUSIONS: Atopic and nonatopic CRSwNP patients may possess the patterns of inflammatory response in polyp tissues.
China*
;
Cytokines
;
Enzyme-Linked Immunosorbent Assay
;
Eosinophils
;
Humans
;
Immunoglobulin E
;
Immunohistochemistry
;
Inflammation
;
Interleukin-10
;
Interleukin-17
;
Interleukin-2
;
Interleukin-5
;
Mast Cells
;
Nasal Polyps*
;
Neutrophils
;
Polyps
;
Prostaglandin D2
;
Real-Time Polymerase Chain Reaction
;
RNA, Messenger
;
Transcription Factors
7.Advanced glycation end products promote differentiation of CD4(+) T helper cells toward pro-inflammatory response.
Xiao-qun HAN ; Zuo-jiong GONG ; San-qing XU ; Xun LI ; Li-kun WANG ; Shi-min WU ; Jian-hong WU ; Hua-fen YANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(1):10-17
This study investigated the effect of advanced glycation end products (AGEs) on differentiation of naïve CD4(+) T cells and the role of the receptor of AGEs (RAGE) and peroxisome proliferator-activated receptors (PPARs) activity in the process in order to gain insight into the mechanism of immunological disorders in diabetes. AGEs were prepared by the reaction of bovine serum albumin (BSA) with glucose. Human naïve CD4(+) T cells, enriched from blood of healthy adult volunteers with negative selection assay, were cultured in vitro and treated with various agents including AGEs, BSA, high glucose, PGJ2 and PD68235 for indicated time. In short hairpin (sh) RNA knock-down experiment, naïve CD4(+) T cells were transduced with media containing shRNA-lentivirus generated from lentiviral packaging cell line, Lent-X(TM) 293 T cells. Surface and intracellular cytokine stainings were used for examination of CD4(+) T cell phenotypes, and real-time PCR and Western blotting for detection of transcription factor mRNA and protein expression, respectively. The suppressive function of regulatory T (Treg) cells was determined by a [(3)H]-thymidine incorporation assay. The results showed that AGEs induced higher pro-inflammatory Th1/Th17 cells differentiated from naïve CD4(+) T cells than the controls, whereas did not affect anti-inflammatory Treg cells. However, AGEs eliminated suppressive function of Treg cells. In addition, AGEs increased RAGE mRNA expression in naïve CD4(+) T cells, and RAGE knock-down by shRNA eliminated the effect of AGEs on the differentiation of CD4(+) T cells and the reduction of suppressive function of Treg cells. Furthermore, AGEs inhibited the mRNA expression of PPARγ, not PPARα PPARγ agonist, PGJ2, inhibited the effect of AGEs on naïve CD4(+) T cell differentiation and reversed the AGE-reduced suppressive function of Treg cells; on the other hand, PPARγ antagonist, PD68235, attenuated the blocking effect of RAGE shRNA on the role of AGEs. It was concluded that AGEs may promote CD4(+) T cells development toward pro-inflammatory state, which is associated with increased RAGE mRNA expression and reduced PPARγ activity.
Adult
;
Animals
;
Blotting, Western
;
CD4-Positive T-Lymphocytes
;
drug effects
;
metabolism
;
Cattle
;
Cell Differentiation
;
drug effects
;
Cells, Cultured
;
Glucose
;
pharmacology
;
Glycation End Products, Advanced
;
pharmacology
;
HEK293 Cells
;
Humans
;
Interferon-gamma
;
metabolism
;
Interleukin-17
;
metabolism
;
PPAR gamma
;
agonists
;
genetics
;
metabolism
;
Prostaglandin D2
;
analogs & derivatives
;
pharmacology
;
RNA Interference
;
Receptor for Advanced Glycation End Products
;
Receptors, Immunologic
;
genetics
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
Serum Albumin, Bovine
;
pharmacology
;
T-Lymphocytes, Regulatory
;
drug effects
;
metabolism
;
Th1 Cells
;
drug effects
;
metabolism
;
Th17 Cells
;
drug effects
;
metabolism
8.15-deoxy-Δ¹²,¹⁴-prostaglandin J₂ ameliorates endotoxin-induced acute lung injury in rats.
Dong LIU ; Zhilong GENG ; Wankun ZHU ; Huiwen WANG ; Ye CHEN ; Juan LIANG
Chinese Medical Journal 2014;127(5):815-820
BACKGROUNDA proinflammatory milieu emerging in the lung due to neutrophil accumulation and activation is a key in the pathogenesis of acute lung injury (ALI). 15-deoxy-Δ(12, 14)-prostaglandin J2 (15d-PGJ2), one of the terminal products of the cyclooxygenase-2 pathway, is known to be the endogenous ligand of peroxisome proliferator-activated receptor γ (PPAR-γ) with multiple physiological properties. Growing evidence indicates that 15d-PGJ2 has anti-inflammatory, antiproliferative, cytoprotective and pro-resolving effects. We investigated whether 15d-PGJ2 has a protective effect against endotoxin-induced acute lung injury in rats.
METHODSTwenty-four male Wistar rats were randomly assigned into four groups (n = 6 per group): sham+vehicle group, sham+15d-PGJ2 group, LPS+vehicle group, and LPS+15d-PGJ2 group. The rats were given either lipopolysaccharide (LPS, 6 mg/kg intravenously) or saline, and pretreated with 15d-PGJ2 (0.3 mg/kg intravenously) or its vehicle (dimethyl sulphoxide) 30 minutes before LPS. Histological alterations, wet/dry weight (W/D) ratio and myeloperoxidase (MPO) activity as well as tumor necrosis factor (TNF)-α and cytokine-induced neutrophil chemoattractant-1 (CINC-1) levels were determined in lung tissues four hours after LPS injection. Immunohistochemical analysis for intercellular adhesion molecule-1 (ICAM-1) expression and Western blotting analysis for nuclear factor (NF)-κB p65 translocation and IκBα protein levels were also studied.
RESULTS15d-PGJ2 pretreatment significantly attenuated LPS-induced lung injury, and reduced the increased W/D ratio, MPO activity, TNF-α, CINC-1 levels, and ICAM-1 expression in the lung. 15d-PGJ2 also suppressed the nuclear NF-κB p65 translocation and increased cytosolic IκBα levels.
CONCLUSIONS15d-PGJ2 protects against endotoxin-induced acute lung injury, most likely through the reduction of proinflammatory protein levels during endotoxemia subsequent to the inhibition of NF-κB activation.
Acute Lung Injury ; chemically induced ; drug therapy ; immunology ; Animals ; Chemokine CXCL1 ; metabolism ; I-kappa B Proteins ; metabolism ; Intercellular Adhesion Molecule-1 ; metabolism ; Lipopolysaccharides ; toxicity ; Male ; NF-KappaB Inhibitor alpha ; NF-kappa B ; metabolism ; Prostaglandin D2 ; analogs & derivatives ; therapeutic use ; Rats ; Rats, Wistar ; Tumor Necrosis Factor-alpha ; metabolism
9.Britanin Suppresses IgE/Ag-Induced Mast Cell Activation by Inhibiting the Syk Pathway.
Yue LU ; Xian LI ; Young Na PARK ; Okyun KWON ; Donggen PIAO ; Young Chae CHANG ; Cheorl Ho KIM ; Eunkyung LEE ; Jong Keun SON ; Hyeun Wook CHANG
Biomolecules & Therapeutics 2014;22(3):193-199
The aim of this study was to determine whether britanin, isolated from the flowers of Inula japonica (Inulae Flos), modulates the generation of allergic inflammatory mediators in activated mast cells. To understand the biological activity of britanin, the authors investigated its effects on the generation of prostaglandin D2 (PGD2), leukotriene C4 (LTC4), and degranulation in IgE/Ag-induced bone marrow-derived mast cells (BMMCs). Britanin dose dependently inhibited degranulation and the generations of PGD2 and LTC4 in BMMCs. Biochemical analyses of IgE/Ag-mediated signaling pathways demonstrated that britanin suppressed the phosphorylation of Syk kinase and multiple downstream signaling processes, including phospholipase Cgamma1 (PLCgamma1)-mediated calcium influx, the activation of mitogen-activated protein kinases (MAPKs; extracellular signal-regulated kinase 1/2, c-Jun NH2-terminal kinase and p38), and the nuclear factor-kappaB (NF-kappaB) pathway. Taken together, the findings of this study suggest britanin suppresses degranulation and eicosanoid generation by inhibiting the Syk-dependent pathway and britanin might be useful for the treatment of allergic inflammatory diseases.
Calcium
;
Family Characteristics
;
Flowers
;
Inula
;
Leukotriene C4
;
Mast Cells*
;
Mitogen-Activated Protein Kinases
;
Phospholipases
;
Phosphorylation
;
Phosphotransferases
;
Prostaglandin D2
10.Curcumin Inhibits the Activation of Immunoglobulin E-Mediated Mast Cells and Passive Systemic Anaphylaxis in Mice by Reducing Serum Eicosanoid and Histamine Levels.
Xian LI ; Yue LU ; Ye JIN ; Jong Keun SON ; Seung Ho LEE ; Hyeun Wook CHANG
Biomolecules & Therapeutics 2014;22(1):27-34
Curcumin is naturally occurring polyphenolic compound found in turmeric and has many pharmacological activities. The present study was undertaken to evaluate anti-allergic inflammatory activity of curcumin, and to investigate its inhibitory mechanisms in immunoglobulin E (IgE)/Ag-induced mouse bone marrow-derived mast cells (BMMCs) and in a mouse model of IgE/Ag-mediated passive systemic anaphylaxis (PSA). Curcumin inhibited cyclooxygenase-2 (COX-2) dependent prostaglandin D2 (PGD2) and 5-lipoxygenase (5-LO) dependent leukotriene C4 (LTC4) generation dose-dependently in BMMCs. To probe the mechanism involved, we assessed the effects of curcumin on the phosphorylation of Syk and its downstream signal molecules. Curcumin inhibited intracellular Ca2+ influx via phospholipase Cgamma1 (PLCgamma1) activation and the phosphorylation of mitogen-activated protein kinases (MAPKs) and the nuclear factor-kappaB (NF-kappaB) pathway. Furthermore, the oral administration of curcumin significantly attenuated IgE/Ag-induced PSA, as determined by serum LTC4, PGD2, and histamine levels. Taken together, this study shows that curcumin offers a basis for drug development for the treatment of allergic inflammatory diseases.
Administration, Oral
;
Anaphylaxis*
;
Animals
;
Arachidonate 5-Lipoxygenase
;
Curcuma
;
Curcumin*
;
Cyclooxygenase 2
;
Histamine*
;
Immunoglobulin E
;
Immunoglobulins*
;
Leukotriene C4
;
Mast Cells*
;
Mice*
;
Mitogen-Activated Protein Kinases
;
Phospholipases
;
Phosphorylation
;
Prostaglandin D2

Result Analysis
Print
Save
E-mail