1.Effects of Rehmanniae Radix Praeparata on striatal neuronal apoptosis in ADHD rats via Bcl-2/Bax/caspase-3 pathway.
Jing WANG ; Kang-Lin ZHU ; Xin-Qiang NI ; Wen-Hua CAI ; Yu-Ting YANG ; Jia-Qi ZHANG ; Chong ZHOU ; Mei-Jun SHI
China Journal of Chinese Materia Medica 2025;50(3):750-757
This study investigated the effects of Rehmanniae Radix Praeparata on striatal neuronal apoptosis in rats with attention deficit hyperactivity disorder(ADHD) based on the B-cell lymphoma-2(Bcl-2)/Bcl-2-associated X protein(Bax)/caspase-3 signaling pathway. Twenty-four 3-week-old male spontaneously hypertensive rats(SHR) were randomly divided into a model group, a methylphenidate group(2 mg·kg~(-1)·d~(-1)), and a Rehmanniae Radix Praeparata group(2.4 mg·kg~(-1)·d~(-1)). Age-matched male Wistar Kyoto(WKY) rats were used as the normal control group, with 8 rats in each group. The rats were administered by gavage for 28 days. Body weight and food intake were recorded for each group. The open field test and elevated plus maze test were used to assess hyperactivity and impulsive behaviors. Nissl staining was used to detect changes in striatal neurons and Nissl bodies. Terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) fluorescence staining was used to detect striatal cell apoptosis. Western blot was employed to detect the expression levels of Bcl-2, Bax, and caspase-3 proteins in the striatum. The results showed that compared with the model group, Rehmanniae Radix Praeparata significantly reduced the total movement distance, average movement speed, and central area residence time in the open field test, and significantly reduced the ratio of open arm entries, open arm stay time, and head dipping in the elevated plus maze test. Furthermore, it increased the number of Nissl bodies in striatal neurons, significantly downregulated the apoptosis index, significantly increased Bcl-2 protein expression and the Bcl-2/Bax ratio, and reduced Bax and caspase-3 protein expression. In conclusion, Rehmanniae Radix Praeparata can reduce hyperactivity and impulsive behaviors in ADHD rats. Its mechanism may be related to the regulation of the Bcl-2/Bax/caspase-3 signaling pathway in the striatum, enhancing the anti-apoptotic capacity of striatal neurons.
Animals
;
Male
;
Apoptosis/drug effects*
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Caspase 3/genetics*
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
bcl-2-Associated X Protein/genetics*
;
Rehmannia/chemistry*
;
Attention Deficit Disorder with Hyperactivity/physiopathology*
;
Signal Transduction/drug effects*
;
Neurons/cytology*
;
Rats, Inbred SHR
;
Rats, Inbred WKY
;
Humans
;
Corpus Striatum/cytology*
;
Plant Extracts
2.Enriched environment reduces pyramidal neuron excitability in the anterior cingulate cortex to alleviate restraint stress-induced anxiety-like behaviors in mice.
Changfeng CHEN ; Qin FANG ; Yinhuan GAO ; Liecheng WANG ; Lei CHEN
Journal of Southern Medical University 2025;45(5):962-968
OBJECTIVES:
To investigate the mechanism by which the pyramidal neurons of the anterior cingulate cortex (ACC) modulate the effects of enriched environment (EE) for relieving anxiety-like behaviors in mice.
METHODS:
C57BL/6J mice were randomly divided into control group, restraint stress (RS) group, and RS+EE group (n=8). The mice in the latter two groups were subjected to RS for 2 h daily for 3 days, and those in RS+EE group were housed in an EE during modeling. Anxiety-like behaviors of the mice were evaluated using the elevated plus-maze tests (EPM) and open field test (OFT). Changes in c-Fos expression in the ACC of the mice were detected with immunofluorescence assay, and pyramidal neuron excitability in the ACC (PynACC) was measured using patch-clamp technique. The miniature excitatory and inhibitory postsynaptic currents (mEPSC and mIPSC, respectively) were analyzed to assess synaptic transmission changes.
RESULTS:
Behavioral tests showed obvious anxiety-like behaviors in RS mice, and such behavioral changes were significantly improved in RS+EE mice. Immunofluorescence staining revealed significantly increased c-Fos expression in the ACC in RS mice but lowered c-Fos expression in RS+EE group. Compared with the control mice, the RS mice showed increased action potential firing rate of PynACC, which was significantly reduced in RS+EE group. Compared with the RS mice, the RS+EE mice showed also decreased frequency of mEPSCs of PynACC, but the amplitude exhibited no significant changes. No obvious changes in the frequency or amplitude of mIPSCs were observed in RS+EE mice.
CONCLUSIONS
EE reduces excitability of PynACC to alleviate anxiety-like behaviors induced by RS in mice.
Animals
;
Anxiety/physiopathology*
;
Gyrus Cinguli
;
Mice, Inbred C57BL
;
Mice
;
Pyramidal Cells/physiology*
;
Restraint, Physical
;
Stress, Psychological
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Male
;
Behavior, Animal
;
Environment
;
Excitatory Postsynaptic Potentials
3.Computational Modeling of the Prefrontal-Cingulate Cortex to Investigate the Role of Coupling Relationships for Balancing Emotion and Cognition.
Jinzhao WEI ; Licong LI ; Jiayi ZHANG ; Erdong SHI ; Jianli YANG ; Xiuling LIU
Neuroscience Bulletin 2025;41(1):33-45
Within the prefrontal-cingulate cortex, abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions, contributing to the development of mental disorders such as depression. Despite this understanding, the neural circuit mechanisms underlying this phenomenon remain elusive. In this study, we present a biophysical computational model encompassing three crucial regions, including the dorsolateral prefrontal cortex, subgenual anterior cingulate cortex, and ventromedial prefrontal cortex. The objective is to investigate the role of coupling relationships within the prefrontal-cingulate cortex networks in balancing emotions and cognitive processes. The numerical results confirm that coupled weights play a crucial role in the balance of emotional cognitive networks. Furthermore, our model predicts the pathogenic mechanism of depression resulting from abnormalities in the subgenual cortex, and network functionality was restored through intervention in the dorsolateral prefrontal cortex. This study utilizes computational modeling techniques to provide an insight explanation for the diagnosis and treatment of depression.
Prefrontal Cortex/physiology*
;
Humans
;
Emotions/physiology*
;
Cognition/physiology*
;
Gyrus Cinguli/physiology*
;
Computer Simulation
;
Models, Neurological
;
Neural Pathways/physiology*
;
Nerve Net/physiology*
4.Dentate Gyrus Morphogenesis is Regulated by an Autism Risk Gene Trio Function in Granule Cells.
Mengwen SUN ; Weizhen XUE ; Hu MENG ; Xiaoxuan SUN ; Tianlan LU ; Weihua YUE ; Lifang WANG ; Dai ZHANG ; Jun LI
Neuroscience Bulletin 2025;41(1):1-15
Autism Spectrum Disorders (ASDs) are reported as a group of neurodevelopmental disorders. The structural changes of brain regions including the hippocampus were widely reported in autistic patients and mouse models with dysfunction of ASD risk genes, but the underlying mechanisms are not fully understood. Here, we report that deletion of Trio, a high-susceptibility gene of ASDs, causes a postnatal dentate gyrus (DG) hypoplasia with a zigzagged suprapyramidal blade, and the Trio-deficient mice display autism-like behaviors. The impaired morphogenesis of DG is mainly caused by disturbing the postnatal distribution of postmitotic granule cells (GCs), which further results in a migration deficit of neural progenitors. Furthermore, we reveal that Trio plays different roles in various excitatory neural cells by spatial transcriptomic sequencing, especially the role of regulating the migration of postmitotic GCs. In summary, our findings provide evidence of cellular mechanisms that Trio is involved in postnatal DG morphogenesis.
Animals
;
Dentate Gyrus/metabolism*
;
Mice
;
Morphogenesis/physiology*
;
Neurons/pathology*
;
Cell Movement
;
Mice, Inbred C57BL
;
Autism Spectrum Disorder/pathology*
;
Mice, Knockout
;
Neural Stem Cells
;
Male
;
Neurogenesis
;
Autistic Disorder/genetics*
5.Anterior Cingulate Cortex Contributes to the Hyperlocomotion under Nitrogen Narcosis.
Bin PENG ; Xiao-Bo WU ; Zhi-Jun ZHANG ; De-Li CAO ; Lin-Xia ZHAO ; Hao WU ; Yong-Jing GAO
Neuroscience Bulletin 2025;41(5):775-789
Nitrogen narcosis is a neurological syndrome that manifests when humans or animals encounter hyperbaric nitrogen, resulting in a range of motor, emotional, and cognitive abnormalities. The anterior cingulate cortex (ACC) is known for its significant involvement in regulating motivation, cognition, and action. However, its specific contribution to nitrogen narcosis-induced hyperlocomotion and the underlying mechanisms remain poorly understood. Here we report that exposure to hyperbaric nitrogen notably increased the locomotor activity of mice in a pressure-dependent manner. Concurrently, this exposure induced heightened activation among neurons in both the ACC and dorsal medial striatum (DMS). Notably, chemogenetic inhibition of ACC neurons effectively suppressed hyperlocomotion. Conversely, chemogenetic excitation lowered the hyperbaric pressure threshold required to induce hyperlocomotion. Moreover, both chemogenetic inhibition and genetic ablation of activity-dependent neurons within the ACC reduced the hyperlocomotion. Further investigation revealed that ACC neurons project to the DMS, and chemogenetic inhibition of ACC-DMS projections resulted in a reduction in hyperlocomotion. Finally, nitrogen narcosis led to an increase in local field potentials in the theta frequency band and a decrease in the alpha frequency band in both the ACC and DMS. These results collectively suggest that excitatory neurons within the ACC, along with their projections to the DMS, play a pivotal role in regulating the hyperlocomotion induced by exposure to hyperbaric nitrogen.
Animals
;
Gyrus Cinguli/drug effects*
;
Male
;
Mice, Inbred C57BL
;
Locomotion/drug effects*
;
Neurons/drug effects*
;
Mice
;
Nitrogen/toxicity*
;
Inert Gas Narcosis/physiopathology*
;
Corpus Striatum/physiopathology*
6.Deciphering the Role of Shank3 in Dendritic Morphology and Synaptic Function Across Postnatal Developmental Stages in the Shank3B KO Mouse.
Jing YANG ; Guaiguai MA ; Xiaohui DU ; Jinyi XIE ; Mengmeng WANG ; Wenting WANG ; Baolin GUO ; Shengxi WU
Neuroscience Bulletin 2025;41(4):583-599
Autism Spectrum Disorder (ASD) is marked by early-onset neurodevelopmental anomalies, yet the temporal dynamics of genetic contributions to these processes remain insufficiently understood. This study aimed to elucidate the role of the Shank3 gene, known to be associated with monogenic causes of autism, in early developmental processes to inform the timing and mechanisms for potential interventions for ASD. Utilizing the Shank3B knockout (KO) mouse model, we examined Shank3 expression and its impact on neuronal maturation through Golgi staining for dendritic morphology and electrophysiological recordings to measure synaptic function in the anterior cingulate cortex (ACC) across different postnatal stages. Our longitudinal analysis revealed that, while Shank3B KO mice displayed normal neuronal morphology at one week postnatal, significant impairments in dendritic growth and synaptic activity emerged by two to three weeks. These findings highlight the critical developmental window during which Shank3 is essential for neuronal and synaptic maturation in the ACC.
Animals
;
Nerve Tissue Proteins/metabolism*
;
Mice, Knockout
;
Dendrites/metabolism*
;
Mice
;
Synapses/metabolism*
;
Gyrus Cinguli/metabolism*
;
Male
;
Mice, Inbred C57BL
;
Autism Spectrum Disorder/genetics*
;
Microfilament Proteins
7.The Supplementary Motor Area as a Flexible Hub Mediating Behavioral and Neuroplastic Changes in Motor Sequence Learning: A TMS and TMS-EEG Study.
Jing CHEN ; Yanzi FAN ; Xize JIA ; Fengmei FAN ; Jinhui WANG ; Qihong ZOU ; Bing CHEN ; Xianwei CHE ; Yating LV
Neuroscience Bulletin 2025;41(5):837-852
Attempts have been made to modulate motor sequence learning (MSL) through repetitive transcranial magnetic stimulation, targeting different sites within the sensorimotor network. However, the target with the optimum modulatory effect on neural plasticity associated with MSL remains unclarified. This study was therefore designed to compare the role of the left primary motor cortex and the left supplementary motor area proper (SMAp) in modulating MSL across different complexity levels and for both hands, as well as the associated neuroplasticity by applying intermittent theta burst stimulation together with the electroencephalogram and concurrent transcranial magnetic stimulation. Our data demonstrated the role of SMAp stimulation in modulating neural communication to support MSL, which is achieved by facilitating regional activation and orchestrating neural coupling across distributed brain regions, particularly in interhemispheric connections. These findings may have important clinical implications, particularly for motor rehabilitation in populations such as post-stroke patients.
Humans
;
Transcranial Magnetic Stimulation
;
Motor Cortex/physiology*
;
Male
;
Electroencephalography
;
Neuronal Plasticity/physiology*
;
Female
;
Adult
;
Evoked Potentials, Motor/physiology*
;
Young Adult
;
Learning/physiology*
8.Interactively Integrating Reach and Grasp Information in Macaque Premotor Cortex.
Junjun CHEN ; Guanghao SUN ; Yiwei ZHANG ; Weidong CHEN ; Xiaoxiang ZHENG ; Shaomin ZHANG ; Yaoyao HAO
Neuroscience Bulletin 2025;41(11):1991-2009
Reach-to-grasp movements require integrating information on both object location and grip type, but how these elements are planned and to what extent they interact remains unclear. We designed a new experimental paradigm in which monkeys sequentially received reach and grasp cues with delays, requiring them to retain and integrate both cues to grasp the goal object with appropriate hand gestures. Neural activity in the dorsal premotor cortex (PMd) revealed that reach and grasp were similarly represented yet not independent. Upon receiving the second cue, the PMd continued encoding the first, but over half of the neurons displayed incongruent modulations: enhanced, attenuated, or even reversed. Population-level analysis showed significant changes in encoding structure, forming distinct neural patterns. Leveraging canonical correlation analysis, we identified a shared subspace preserving the initial cue's encoding, contributed by both congruent and incongruent neurons. Together, these findings reveal a novel perspective on the interactive planning of reach and grasp within the PMd, providing insights into potential applications for brain-machine interfaces.
Animals
;
Motor Cortex/physiology*
;
Hand Strength/physiology*
;
Macaca mulatta
;
Psychomotor Performance/physiology*
;
Neurons/physiology*
;
Male
;
Cues
;
Movement/physiology*
;
Gestures
9.Sex Differences in Pain Contagion Determined by the Balance of Oxytocin and Corticosterone in the Anterior Cingulate Cortex in Rodents.
Zhiyuan XIE ; Wenxi YUAN ; Lingbo ZHOU ; Jie XIAO ; Huabao LIAO ; Jiang-Jian HU ; Xue-Jun SONG
Neuroscience Bulletin 2025;41(12):2167-2183
Empathy is crucial for communication and survival for individuals. Whether empathy in pain contagion shows sex differences and its underlying mechanisms remain unclear. Here, we report that pain contagion can occur in stranger female rats, but not in stranger males. Blocking oxytocin receptors in the anterior cingulate cortex (ACC) suppressed pain contagion in female strangers, while oxytocin administration induced pain contagion in male strangers. In vitro, corticosterone reduces neuronal activation by oxytocin. During male stranger interactions, higher corticosterone decreased oxytocin receptor-positive neuronal activity in the ACC, suppressing pain contagion. These findings highlight the role of oxytocin in pain contagion and suggest that sex differences in empathy may be determined by the balance of oxytocin and corticosterone in the ACC. This study suggests an approach for the treatment of certain mental disorders associated with abnormal empathy, such as autism and depression.
Animals
;
Oxytocin/pharmacology*
;
Gyrus Cinguli/drug effects*
;
Male
;
Female
;
Corticosterone/pharmacology*
;
Empathy/drug effects*
;
Sex Characteristics
;
Receptors, Oxytocin/antagonists & inhibitors*
;
Pain/psychology*
;
Rats
;
Rats, Sprague-Dawley
;
Neurons/metabolism*
10.Cortical Control of Itch Sensation by Vasoactive Intestinal Polypeptide-Expressing Interneurons in the Anterior Cingulate Cortex.
Yiwen ZHANG ; Jiaqi LI ; You WU ; Jialin SI ; Yuanyuan ZHU ; Meng NIAN ; Chen CHEN ; Ningcan MA ; Xiaolin ZHANG ; Yaoyuan ZHANG ; Yiting LIN ; Ling LIU ; Yang BAI ; Shengxi WU ; Jing HUANG
Neuroscience Bulletin 2025;41(12):2184-2200
The anterior cingulate cortex (ACC) has recently been proposed as a key player in the representation of itch stimuli. However, to date, little is known about the contribution of specific ACC interneuron populations to itch processing. Using c-Fos immunolabeling and in vivo Ca2+ imaging, we reported that both histamine and chloroquine stimuli-induced acute itch caused a marked enhancement of vasoactive intestinal peptide (VIP)-expressing interneuron activity in the ACC. Behavioral data indicated that optogenetic and chemogenetic activation of these neurons reduced scratching responses related to histaminergic and non-histaminergic acute itch. Similar neural activity and modulatory role of these neurons were seen in mice with chronic itch induced by contact dermatitis. Together, this study highlights the importance of ACC VIP+ neurons in modulating itch-related affect and behavior, which may help us to develop novel mechanism-based strategies to treat refractory chronic itch in the clinic.
Animals
;
Pruritus/physiopathology*
;
Vasoactive Intestinal Peptide/metabolism*
;
Interneurons/metabolism*
;
Gyrus Cinguli/metabolism*
;
Mice
;
Male
;
Mice, Inbred C57BL
;
Histamine
;
Chloroquine
;
Optogenetics
;
Mice, Transgenic

Result Analysis
Print
Save
E-mail