1.Diketopiperazines with anti-skin inflammation from marine-derived endophytic fungus Aspergillus sp. and configurational reassignment of aspertryptanthrins.
Jin YANG ; Xianmei XIONG ; Lizhi GONG ; Fengyu GAN ; Hanling SHI ; Bin ZHU ; Haizhen WU ; Xiujuan XIN ; Lingyi KONG ; Faliang AN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):980-989
Two novel diketopiperazines (1 and 5), along with ten known compounds (2-4, 6-12) demonstrating significant skin inflammation inhibition, were isolated from a marine-derived fungus identified as Aspergillus sp. FAZW0001. The structural elucidation and configurational reassessments of compounds 1-5 were established through comprehensive spectral analyses, with their absolute configurations determined via single crystal X-ray diffraction using Cu Kα radiation, Marfey's method, and comparison between experimental and calculated electronic circular dichroism (ECD) spectra. Compounds 1, 2, and 8 exhibited significant anti-inflammatory activities in Propionibacterium acnes (P. acnes)-induced human monocyte cell lines. Compound 8 demonstrated the ability to down-regulate interleukin-1β (IL-1β) expression by inhibiting Toll-like receptor 2 (TLR2) expression and modulating the activation of myeloid differentiation factor 88 (MyD88), mitogen-activated protein kinase (MAPK), and nuclear factor κB (NF-κB) signaling pathways, thus reducing the cellular inflammatory response induced by P. acnes. Additionally, compound 8 showed the capacity to suppress mitochondrial reactive oxygen species (ROS) production and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome activation, thereby reducing IL-1β maturation and secretion. A three-dimensional quantitative structure-activity relationships (3D-QSAR) model was applied to compounds 5-12 to analyze their anti-inflammatory structure-activity relationships.
Humans
;
Aspergillus/chemistry*
;
Diketopiperazines/isolation & purification*
;
Anti-Inflammatory Agents/isolation & purification*
;
Interleukin-1beta/genetics*
;
Toll-Like Receptor 2/immunology*
;
Propionibacterium acnes/drug effects*
;
NF-kappa B/genetics*
;
Molecular Structure
;
Myeloid Differentiation Factor 88/immunology*
;
Monocytes/immunology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Cell Line
2.A Case of Brain Abscess Caused by Propionibacterium acnes 13 Months after Neurosurgery and Confirmed by 16S rRNA Gene Sequencing.
Soie CHUNG ; Jun Sik KIM ; Sang Won SEO ; Eun Kyung RA ; Sei Ick JOO ; So Yeon KIM ; Sung Sup PARK ; Eui Chong KIM
The Korean Journal of Laboratory Medicine 2011;31(2):122-126
Propionibacterium acnes is a gram-positive anaerobic bacillus and a normal inhabitant of the skin. Although it is often considered a contaminant of blood cultures, it can occasionally cause serious infections, including postoperative central nervous system infections. Here, we report the case of a 70-yr-old man who developed a large cerebral abscess caused by P. acnes 13 months after neurosurgery. Immediate gram staining of the pus from his brain revealed the presence of gram-positive coccobacilli. However, colony growth was observed only after 5 days of culture. Therefore, we performed 16S rRNA gene sequencing of the pus specimen. The isolate was identified as P. acnes. The colonies developed 9 days after the initial culture. The API Rapid ID 32A test (bioMerieux, France) was performed using a colony, but an unacceptable profile was obtained. Then, the pus was transferred into the enrichment broths of the BACTEC FX (Becton Dickinson, USA) and BacT/Alert 3D (bioMerieux, Organon Teknika, USA) systems, but only the BACTEC FX system could detect growth after 5 days. We performed 16S rRNA gene sequencing and API Rapid 32A profiling with a colony recovered from Brucella agar, which was inoculated with the microbial growth in the enrichment broth from the BACTEC FX system. The organism was identified as P. acnes by both methods. This case suggests that 16S rRNA gene sequencing may be a useful alternative for identifying slowly growing P. acnes from specimens that do not show growth after 5 days of culture.
Aged
;
Brain Abscess/*diagnosis/microbiology
;
Gram-Positive Bacterial Infections/*diagnosis/microbiology
;
Humans
;
Magnetic Resonance Imaging
;
Male
;
Neurosurgical Procedures
;
Propionibacterium acnes/genetics/*isolation & purification
;
RNA, Ribosomal, 16S/chemistry/*genetics
;
Sequence Analysis, DNA
;
Surgical Wound Infection/*diagnosis/microbiology

Result Analysis
Print
Save
E-mail