1.Mechanisms by which the gut microbiota regulates depressive disorder via the tryptophan metabolic pathway.
Jing DU ; Jiao LI ; Pule LIU ; Yan ZHANG ; Qiangli DONG ; Ning YANG ; Xinru LIU
Journal of Central South University(Medical Sciences) 2025;50(7):1263-1270
The relationship between gut microbiota and depressive disorder has become a research focus in recent years. Within the microbiota-gut-brain axis, the gut microbiota influences the onset and progression of depressive disorder primarily through the tryptophan metabolic pathway. Tryptophan, an essential amino acid in humans, is subject to dual regulation by intestinal microorganisms, which modulate its metabolic balance via inflammatory stimulation and microbial metabolite production. In depression, excessive activation of the kynurenine branch of tryptophan metabolism leads to the accumulation of proinflammatory and neurotoxic metabolites, thereby exacerbating neuroinflammation in the brain. Intervention studies indicate that the antidepressant-like effects of probiotics and traditional Chinese medicine are associated with remodeling of the gut microbiota, restoration of tryptophan metabolic balance, and alleviation of neuroinflammation. Furthermore, targeted inhibition of kynurenine 3-monooxygenase can mitigate neuroinflammation by regulating microglial activity, thus improving depressive-like behaviors. In summary, the metabolite-inflammation axis represents a central node in the interaction regulation between tryptophan metabolism and the microbiota-gut-brain axis. This provides a theoretical foundation for developing novel therapeutic strategies targeting depression through modulation of gut microbiota-mediated tryptophan metabolism.
Tryptophan/metabolism*
;
Gastrointestinal Microbiome/physiology*
;
Humans
;
Depressive Disorder/microbiology*
;
Probiotics/therapeutic use*
;
Brain/metabolism*
;
Kynurenine/metabolism*
;
Metabolic Networks and Pathways
;
Animals
;
Medicine, Chinese Traditional
2.Early life Bifidobacterium bifidum BD-1 intervention alleviates hyperactivity of juvenile female rats with attention deficit hyperactivity disorder.
Yang YANG ; Kai WANG ; Jianxiu LIU ; Zhimo ZHOU ; Wen JIA ; Simou WU ; Jinxing LI ; Fang HE ; Ruyue CHENG
Journal of Southern Medical University 2025;45(4):702-710
OBJECTIVES:
To investigate the effects of early life intervention with Bifidobacterium bifidum BD-1 (B. bifidum BD-1) on hyperactivity in a female mouse model of attention deficit hyperactivity disorder (ADHD) and explore the underlying mechanisms.
METHODS:
Eight newborn female Wistar-Kyoto (WKY) rats and 6 spontaneous hypertensive rats (SHRs) were gavaged with saline and another 6 SHRs were gavaged with B. bifidum BD-1 (109 CFU) daily for 3 weeks. Open field test of the rats was conducted at 7 weeks, and fecal samples were collected at weaning (3 weeks) and at 7 weeks for 16S rRNA sequencing. Immunofluorescent staining was used to detect dopamine transporter (DAT) and tyrosine hydroxylase (Th) levels in the striatum and activated microglia in the prefrontal cortex. Treg cells in the mesenteric lymph nodes, spleen and blood were analyzed using flow cytometry.
RESULTS:
The SHRs traveled a significantly greater distance in open fields test than WKY rats, and this behavior was significantly attenuated by B. bifidum BD-1 intervention. The expression of DAT and Th in the striatum was significantly lower in the SHRs than in WKY rats, while B. bifidum BD-1 treatment obviously increased Th levels in the SHRs. B. bifidum BD-1 intervention significantly deceased the number of activated microglia and increased Treg cell counts in the spleen of SHRs. The treatment also enhanced α diversity in gut microbiota of the SHRs and resulted in a decreased Firmicutes/Bacteroidota ratio, more active Muribaculaceae growth, and suppression of Clostridia_UCG-014 proliferation.
CONCLUSIONS
Early life intervention with B. bifidum BD-1 alleviates hyperactivity in female SHRs by modulating the gut microbiota and peripheral immune response, suppressing neuroinflammation and improving dopaminergic system function. These findings provide evidence for early prevention strategies and support the development and application of psychobiotics for ADHD.
Animals
;
Female
;
Rats
;
Rats, Inbred WKY
;
Rats, Inbred SHR
;
Attention Deficit Disorder with Hyperactivity/therapy*
;
Bifidobacterium bifidum
;
Probiotics/therapeutic use*
;
Dopamine Plasma Membrane Transport Proteins/metabolism*
;
Tyrosine 3-Monooxygenase/metabolism*
;
Gastrointestinal Microbiome
;
Disease Models, Animal
3.Gut microbiota: new perspective on the treatment of acute pancreatitis and clinical application prospects.
Qun LANG ; Yujie ZENG ; Hua YAO ; Ninan DAI ; Xiaoyun FU ; Bao FU
Chinese Critical Care Medicine 2025;37(9):797-801
Acute pancreatitis (AP) is a severe inflammatory disease characterized by self-digestion of pancreatic tissue and inflammatory responses. Recent studies have revealed a close connection between gut microbiota and AP. The gut microbiota community, a complex ecosystem composed of trillions of microorganisms, is closely associated with various physiological activities of the host, including metabolic processes, immune system regulation, and intestinal structure maintenance. However, in patients with AP, dysbiosis of the gut microbiota are believed to play a key role in the occurrence and progression of the disease. This dysbiosis not only impairs the integrity of the intestinal barrier, but may also exacerbate inflammatory responses through multiple mechanisms, thereby affecting the severity of the disease and patient' clinical prognosis. This article reviews the mechanisms of action of gut microbiota in AP, explores how gut microbiota dysbiosis affects disease progression, and evaluates current clinical treatment methods to regulate intestinal flora, including probiotic supplementation, fecal microbiota transplantation, antibiotic therapy, and early enteral nutrition. In addition, this article discusses the efficacy and safety of the aforementioned therapeutic approaches, and outlines future research directions, aiming to provide novel perspectives and strategies for the diagnosis, treatment and prognostic evaluation of AP. Through in-depth understanding the interaction between gut microbiota and AP, it is expected that more precise and personalized therapeutic regimens will be developed to improve patients' quality of life and clinical outcomes.
Humans
;
Gastrointestinal Microbiome
;
Dysbiosis
;
Pancreatitis/microbiology*
;
Fecal Microbiota Transplantation
;
Probiotics/therapeutic use*
;
Acute Disease
;
Anti-Bacterial Agents/therapeutic use*
;
Enteral Nutrition
4.Association between gut microbiota and hyperuricemia: insights into innovative therapeutic strategies.
Shujuan ZHANG ; Xiaoqiu LIU ; Yuxin ZHONG ; Yu FU
Chinese Journal of Biotechnology 2025;41(6):2290-2309
Uric acid (UA) is the final metabolite of purines in the human body. An imbalance in UA production and excretion that disrupts homeostasis leads to elevated blood UA levels and the development of hyperuricemia (HUA). Approximately one-third of UA is excreted through the intestinal tract. As a crucial component of the intestinal microenvironment, the gut microbiota plays a pivotal role in regulating blood UA levels. Alterations or imbalances in gut microbiota composition are linked to the onset of HUA, which implies the potential of gut microbiota as a novel target for the prevention and treatment of HUA. This review introduces the occurrence mechanism and damage of hyperuricemia, examines the association between HUA and the gut microbiota and their metabolites, and explores the molecular mechanisms underlying gut microbiota-targeted therapies for HUA. Furthermore, it discusses the potential applications of probiotics, prebiotics, and traditional Chinese medicine (including both single herbs and compound formulas) with UA-lowering effects, along with cutting-edge technologies such as fecal microbiota transplantation and machine learning in HUA treatment. This review provides valuable perspectives and strategies for improving the prevention and treatment of HUA.
Hyperuricemia/microbiology*
;
Humans
;
Gastrointestinal Microbiome/physiology*
;
Probiotics/therapeutic use*
;
Uric Acid/blood*
;
Fecal Microbiota Transplantation
;
Prebiotics
;
Medicine, Chinese Traditional
5.Impacts of Helicobacter pylori infection and eradication on gastrointestinal microbiota: An up-to-date critical review and future perspectives.
Yu LI ; Cong HE ; Nonghua LU
Chinese Medical Journal 2024;137(23):2833-2842
Helicobacter pylori ( H. pylori ) infects approximately half of the population worldwide and causes chronic gastritis, peptic ulcers, and gastric cancer. Test-and-treat strategies have been recommended for the prevention of H. pylori -associated diseases. Advancements in high-throughput sequencing technologies have broadened our understanding of the complex gastrointestinal (GI) microbiota and its role in maintaining host homeostasis. Recently, an increasing number of studies have indicated that the colonization of H. pylori induces dramatic alterations in the gastric microbiota, with a predominance of H. pylori and a reduction in microbial diversity. Dysbiosis of the gut microbiome has also been observed after H. pylori infection, which may play a role in the development of colorectal cancer. However, there is concern regarding the impact of antibiotics on the gut microbiota during H. pylori eradication. In this review, we summarize the current literature concerning how H. pylori infection reshapes the GI microbiota and the underlying mechanisms, including changes in the gastric environment, immune responses, and persistent inflammation. Additionally, the impacts of H. pylori eradication on GI microbial homeostasis and the use of probiotics as adjuvant therapy are also discussed. The shifts in the GI microbiota and their crosstalk with H. pylori may provide potential targets for H. pylori -related gastric diseases and extragastric manifestations.
Helicobacter Infections/microbiology*
;
Humans
;
Helicobacter pylori/pathogenicity*
;
Gastrointestinal Microbiome/drug effects*
;
Probiotics/therapeutic use*
;
Anti-Bacterial Agents/therapeutic use*
6.Characteristics of gut microbiota determine effects of specific probiotics strains in patients with functional constipation.
Haohao ZHANG ; Lijuan SUN ; Zhixin ZHAO ; Yao ZHOU ; Yuyao LIU ; Nannan ZHANG ; Junya YAN ; Shibo WANG ; Renlong LI ; Jing ZHANG ; Xueying WANG ; Wenjiao LI ; Yan PAN ; Meixia WANG ; Bing LUO ; Mengbin LI ; Zhihong SUN ; Yongxiang ZHAO ; Yongzhan NIE
Chinese Medical Journal 2024;137(1):120-122
7.Long-term lung protection of probiotics in children with sepsis and its mechanism.
Yu WANG ; Huijie SONG ; Fanfan DU ; Zhongwen YANG ; Yanli WANG
Chinese Critical Care Medicine 2023;35(12):1268-1273
OBJECTIVE:
To observe the effects of probiotics supplementation on the natural killer T cell (NKT cell) and inflammatory factors in children with sepsis and its protective effect on long-term lung function.
METHODS:
A total of 100 children with sepsis admitted to the department of pediatric intensive care unit (PICU) of Henan Provincial People's Hospital from March 2021 to May 2022 were selected as the research objects. The children were randomly divided into placebo group and probiotic group, 50 cases in each group. In addition to the conventional treatment, the probiotic group was given oral or nasal administration of 0.5 g probiotics, three times a day for 30 days, and the placebo group received oral placebo. 40 healthy children were selected as the healthy control group. The levels of interleukins (IL-4, IL-10), interferon-γ (IFN-γ) and immunoglobulin E (IgE), percentages of NKT cell in blood and induced sputum, lung function of the two groups of children with sepsis were measured before treatment, 7 days after treatment, and during follow-up. All these data were compared with those of healthy children. Kaplan-Meier analysis was used to compare the incidence of cough varied cough (CVA) between the two septic groups. Multiple linear regression analysis was used to explore the influence of various factors on the proportion of NKT cells in induced sputum.
RESULTS:
In the placebo group, 2 cases died and 4 cases were lost to follow-up. In the probiotics group, 3 cases died and 5 cases were lost to follow-up. All the inflammatory factors of two groups decreased slowly after 7 day after treatment. There was no significance in the parameters of the two groups, but the levels of probiotic group declined more evidently. During the follow-up, a further decrease of inflammatory factors in probiotic group could be found, the levels of IL-4 and IL-10 were significantly different from those in the placebo group [IL-4 (ng/L): 20.3±9.3 vs. 27.6±11.9, IL-10 (ng/L): 23.1±6.8 vs. 14.4±4.4, both P < 0.05], with a significant decrease in IgE level (μg/L: 53.0±15.6 vs. 64.2±16.9, P < 0.05]. The results of flow cytometry showed that the percentage of NKT cell in peripheral blood in two septic groups decreased gradually, and the proportion of peripheral blood NKT cells in the probiotics group was significantly lower than that in the placebo group after 7 days of treatment [(4.2±0.9)% vs. (5.3±1.2)%, P < 0.05]. In the follow-up, the level of NKT cell in peripheral blood and induced sputum in probiotic group were lower than the placebo group [peripheral blood: (0.024±0.009)% vs. (0.029±0.008)%, induced sputum: (0.025±0.008)% vs. (0.035±0.01)%, both P < 0.05], which were similar to those in the healthy control group. Meanwhile, the percentage of predicted peak expiratory (PEF%) and ratio of forced expiratory volume in one second/forced vital capacity (FEV1/FVC) of probiotic group were higher than those in the placebo group [PEF%: (91.3±4.8)% vs. (85.8±8.6)%, FEV1/FVC ratio: (91.8±4.7)% vs. (87.2±7.4)%, both P < 0.05]. Although there was no significance in the incidence of CVA between two septic groups according to the Kaplan-Meier curve analysis, multiple linear regression analysis showed mechanical ventilation and allergic history were the risk factors for the increase of NKT cells [β values were 0.584, 0.601, 95% confidence interval (95%CI) were 0.069 to 1.099, 0.011 to 1.192, P = 0.027, 0.046], and probiotics was an independent protective factor for the relieve of increase in NKT cells (β value was -0.984,95%CI was -1.378 to -0.591, P = 0.001).
CONCLUSIONS
Application of probiotics to septic children early could promote the recovery of NKT cell and inflammatory factors, and alleviate the lung function injury induced by them during follow-up, which is helpful to improve the long-term prognosis of the patients.
Child
;
Humans
;
Interleukin-10
;
Interleukin-4
;
Sepsis
;
Probiotics/therapeutic use*
;
Lung
;
Cough
;
Immunoglobulin E
9.Probiotics with anti-type 2 diabetes mellitus properties: targets of polysaccharides from traditional Chinese medicine.
Lun WU ; Yue GAO ; Yang SU ; Jing LI ; Wen-Chen REN ; Qiu-Hong WANG ; Hai-Xue KUANG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(9):641-655
Traditional Chinese medicine polysaccharides is a biologically active ingredient that is not easy to be digested. It is fermented by intestinal microflora to promote qualitative and selective changes in the composition of the intestinal microbiome, which often result in beneficial effects on the health of the host. People call it "prebiotics". In this review, we systematically summarized the anti-diabetic effect of traditional Chinese medicine polysaccharides. These polysaccharides regulate the metabolism of sugar and lipids by inter-influence with the intestinal microflora, and maintain human health, while improving type 2 diabetes-like symptoms such as high blood glucose, and abnormal glucose and lipid metabolism.
Blood Glucose/metabolism*
;
Diabetes Mellitus, Type 2/metabolism*
;
Humans
;
Lipids
;
Medicine, Chinese Traditional
;
Polysaccharides/pharmacology*
;
Probiotics/therapeutic use*
10.Impact of probiotics on the lung development of Bama minipig after premature birth.
Liang XIE ; Sen YANG ; Dan ZHOU ; Ting Ting CHEN ; Ying ZHANG ; Jing LU ; Qiu WANG ; Fang SHI ; Yang LIU ; Hong Ling FU ; Han Min LIU
Chinese Journal of Pediatrics 2022;60(4):297-301
Objectives: To examine the impact of probiotics on the lung development of preterm birth of Bama pig. Methods: From April 2020 to October 2021, this animal experimental research was performed by setting up preterm (birth at gestation 104 d), full-term (birth at gestation 113 d), preterm with probiotics (birth at gestation 104 d treated with probiotics given at 3 d after birth), and full-term with probiotics (birth at gestation 113 d treated with probiotics given at 3 d after birth) groups and using the preterm Bama minipig model, the body weights were recorded and lung, ileum, and intestinal content samples were collected at birth, 4 days, 9 days, and 21 days after births of the piglets in preterm and full-term groups, the same samples were collected on 9 days after births of the piglets in preterm with probiotics and full-term with probiotics groups. The body weight and radial alveolar counts (RAC) were compared to evaluate the lung development of the piglets. The lengths of ileal villus were compared to evaluate the development of ileum. The composition structures of bacteria in ileum were analyzed by 16 S rRNA sequencing. The statistical analyses between different groups were performed by t test. Results: There were totally 30 piglets (16 female piglets and 14 male piglets) involving 12 piglets in preterm and full-term groups respectively and 3 piglets in preterm with probiotics and full-term with probiotics groups respectively. The body weights of the piglets in preterm group were lower than those in full-term group at 4, 9 and 21 d after birth ((507±27) vs. (694±56) g, (620±35) vs. (1 092±154) g, (1 660±210) vs. (2 960±418) g,t=2.96, 2.99, 2.78, all P<0.05). The alveolarization of the preterm piglets at 9 days after birth was significantly lower than that of the full-term piglets at the equivalent time point (4.00±0.29 vs. 6.11±0.35, t=4.64, P<0.01). The bacteria genus with the highest abundance in ileum were all different between the preterm and the full-term groups at 4, 9 and 21 d after birth (4 d Escherichia-Shigella (26.63%) and Enterococcus (30.48%) respectively;9 d Turicibacter (35.94%) and Lactobacillus (27.33%) respectively;21 d Escherichia-Shigella (28.02%) and Lactobacillus (46.29%) respectively). The heights of ileal villus of the preterm piglets at 9 d after birth were significantly lower than those of the full-term minipigs at the equivalent time point ((297±21) vs. (411±32) μm, t=3.01, P=0.007).There were both no differences in the body weight and alveolarization ((692±36) vs. (767±67) g, 5.44±0.34 vs. 5.89±0.26, t=0.74, 1.04, both P>0.05) between the piglets in preterm with probiotics group and those in full-term with probiotics group. Turicibacter was the dominant genus in the piglets of both preterm with probiotics and the full-term with probiotics groups. The heights of ileal villus of the piglets in preterm with probiotics group were significantly longer that those of the piglets in preterm group ((371±13) vs. (297±21) μm, t=3.04, P=0.006), and were both not significantly different from those of the piglets in full-term with probiotics group and full-term group ((371±13) vs. (338±12) and (411±32) μm, t=1.90, 1.15, both P>0.05). Conclusions: Premature birth could impact the lung alveolarization of piglets. The probiotics could improve the lung alveolarization of preterm minipigs by promoting the development of ileum.
Animals
;
Body Weight
;
Female
;
Humans
;
Lung
;
Male
;
Pregnancy
;
Premature Birth
;
Probiotics/therapeutic use*
;
Swine
;
Swine, Miniature

Result Analysis
Print
Save
E-mail