1.Mechanisms by which the gut microbiota regulates depressive disorder via the tryptophan metabolic pathway.
Jing DU ; Jiao LI ; Pule LIU ; Yan ZHANG ; Qiangli DONG ; Ning YANG ; Xinru LIU
Journal of Central South University(Medical Sciences) 2025;50(7):1263-1270
The relationship between gut microbiota and depressive disorder has become a research focus in recent years. Within the microbiota-gut-brain axis, the gut microbiota influences the onset and progression of depressive disorder primarily through the tryptophan metabolic pathway. Tryptophan, an essential amino acid in humans, is subject to dual regulation by intestinal microorganisms, which modulate its metabolic balance via inflammatory stimulation and microbial metabolite production. In depression, excessive activation of the kynurenine branch of tryptophan metabolism leads to the accumulation of proinflammatory and neurotoxic metabolites, thereby exacerbating neuroinflammation in the brain. Intervention studies indicate that the antidepressant-like effects of probiotics and traditional Chinese medicine are associated with remodeling of the gut microbiota, restoration of tryptophan metabolic balance, and alleviation of neuroinflammation. Furthermore, targeted inhibition of kynurenine 3-monooxygenase can mitigate neuroinflammation by regulating microglial activity, thus improving depressive-like behaviors. In summary, the metabolite-inflammation axis represents a central node in the interaction regulation between tryptophan metabolism and the microbiota-gut-brain axis. This provides a theoretical foundation for developing novel therapeutic strategies targeting depression through modulation of gut microbiota-mediated tryptophan metabolism.
Tryptophan/metabolism*
;
Gastrointestinal Microbiome/physiology*
;
Humans
;
Depressive Disorder/microbiology*
;
Probiotics/therapeutic use*
;
Brain/metabolism*
;
Kynurenine/metabolism*
;
Metabolic Networks and Pathways
;
Animals
;
Medicine, Chinese Traditional
2.Early life Bifidobacterium bifidum BD-1 intervention alleviates hyperactivity of juvenile female rats with attention deficit hyperactivity disorder.
Yang YANG ; Kai WANG ; Jianxiu LIU ; Zhimo ZHOU ; Wen JIA ; Simou WU ; Jinxing LI ; Fang HE ; Ruyue CHENG
Journal of Southern Medical University 2025;45(4):702-710
OBJECTIVES:
To investigate the effects of early life intervention with Bifidobacterium bifidum BD-1 (B. bifidum BD-1) on hyperactivity in a female mouse model of attention deficit hyperactivity disorder (ADHD) and explore the underlying mechanisms.
METHODS:
Eight newborn female Wistar-Kyoto (WKY) rats and 6 spontaneous hypertensive rats (SHRs) were gavaged with saline and another 6 SHRs were gavaged with B. bifidum BD-1 (109 CFU) daily for 3 weeks. Open field test of the rats was conducted at 7 weeks, and fecal samples were collected at weaning (3 weeks) and at 7 weeks for 16S rRNA sequencing. Immunofluorescent staining was used to detect dopamine transporter (DAT) and tyrosine hydroxylase (Th) levels in the striatum and activated microglia in the prefrontal cortex. Treg cells in the mesenteric lymph nodes, spleen and blood were analyzed using flow cytometry.
RESULTS:
The SHRs traveled a significantly greater distance in open fields test than WKY rats, and this behavior was significantly attenuated by B. bifidum BD-1 intervention. The expression of DAT and Th in the striatum was significantly lower in the SHRs than in WKY rats, while B. bifidum BD-1 treatment obviously increased Th levels in the SHRs. B. bifidum BD-1 intervention significantly deceased the number of activated microglia and increased Treg cell counts in the spleen of SHRs. The treatment also enhanced α diversity in gut microbiota of the SHRs and resulted in a decreased Firmicutes/Bacteroidota ratio, more active Muribaculaceae growth, and suppression of Clostridia_UCG-014 proliferation.
CONCLUSIONS
Early life intervention with B. bifidum BD-1 alleviates hyperactivity in female SHRs by modulating the gut microbiota and peripheral immune response, suppressing neuroinflammation and improving dopaminergic system function. These findings provide evidence for early prevention strategies and support the development and application of psychobiotics for ADHD.
Animals
;
Female
;
Rats
;
Rats, Inbred WKY
;
Rats, Inbred SHR
;
Attention Deficit Disorder with Hyperactivity/therapy*
;
Bifidobacterium bifidum
;
Probiotics/therapeutic use*
;
Dopamine Plasma Membrane Transport Proteins/metabolism*
;
Tyrosine 3-Monooxygenase/metabolism*
;
Gastrointestinal Microbiome
;
Disease Models, Animal
3.Lactobacillus plantarum ZG03 alleviates oxidative stress via its metabolites short-chain fatty acids.
Shuxian LIN ; Lina GUO ; Yan MA ; Yao XIONG ; Yingxi HE ; Xinzhu XU ; Wen SHENG ; Suhua XU ; Feng QIU
Journal of Southern Medical University 2025;45(10):2223-2230
OBJECTIVES:
To investigate the efficacy of Lactobacillus plantarum ZG03 (L. plantarum ZG03) for ameliorating oxidative stress in zebrafish.
METHODS:
We evaluated the growth pattern of L. plantarum ZG03, observed its morphology using field emission scanning electron microscopy, and assessed its safety and potential efficacy with whole-genome sequencing for genetic analysis. FITC-labeled ZG03 was used to observe its intestinal colonization in zebrafish. In a zebrafish model of 2% glucose-induced oxidative stress, the effect of ZG03 was evaluated by assessing the changes in neutrophils in the caudal hematopoietic tissue (CHT), superoxide dismutase (SOD) activity, reactive oxygen species (ROS) levels, and malondialdehyde (MDA) content. Liquid chromatography-mass spectrometry-based targeted metabolomics was used for analyzing short-chain fatty acids (SCFAs) in the zebrafish, and the antioxidant effects of the key metabolites (acetate, propionate, and caproate) were tested.
RESULTS:
On MRS agar, L. plantarum ZG03 formed circular, smooth, moist, and milky-white colonies with a rod-shaped cell morphology. Genomic analysis revealed abundant sugar metabolism gene clusters. After inoculation of FITC-labeled L. plantarum ZG03 in zebrafish, green fluorescence was clearly observed in the intestinal bulb, mid-intestine, and hind intestine. In zebrafish with glucose-induced oxidative stress, L. plantarum ZG03 significantly reduced ROS levels and the number of neutrophils in the CHT with increased SOD activity. L.plantarum ZG03 significantly increased the content of SCFAs including acetic acid, propionic acid, and caproic acid in zebrafish metabolites. In addition, sodium acetate, sodium propionate, and sodium caproate in the SCFAs significantly increased SOD activity in the zebrafish models.
CONCLUSIONS
L. plantarum ZG03 ameliorates oxidative stress in a glucose-induced zebrafish model through its metabolites, particularly the SCFAs including acetic acid, propionic acid and caproic acid.
Animals
;
Zebrafish/metabolism*
;
Oxidative Stress
;
Lactobacillus plantarum/metabolism*
;
Fatty Acids, Volatile/metabolism*
;
Probiotics
;
Reactive Oxygen Species/metabolism*
;
Superoxide Dismutase/metabolism*
4.Construction of an engineered probiotic strain for efficiently delivering chemokine CXCL12 and application of the strain in diabetic chronic wound healing.
Shengjie LI ; Huijuan SU ; Xiaoting LI ; Jing WEI ; Tingtao CHEN
Chinese Journal of Biotechnology 2025;41(6):2334-2348
Diabetic chronic wounds are characterized by difficult healing, recurrent progression, and high rates of disability and mortality, which make their clinical treatment a medical challenge urgent to be addressed. However, the complex local microenvironment conditions of chronic wounds, such as high protease activity and persistent inflammatory responses, result in low bioavailability of exogenous cytokines (e.g., chemokine CXCL12) at the wound site, limiting their clinical application. In this study, we utilized Lactobacillus plantarum WCFS1 as the chassis to develop an efficient CXCL12 delivery system based on synthetic biology. Subsequently, we evaluated the role of the engineered probiotic strain in promoting the chronic wound healing in diabetic mice. Firstly, we fused the endogenous secretion signal peptide lp_3050 (SPlp_3050) of L. plantarum WCFS1 and the commonly used secretion signal peptide usp45 (SPusp45) of lactic acid bacteria with the reporter gene gusA and inserted them into the pTRK892-P32(pgm) plasmid by molecular cloning. Then, we prepared the engineered strains and characterized the efficacy of the two signal peptides in driving the secretion of GusA. The results showed that SPlp_3050 efficiently drove the secretion of GusA in L. plantarum WCFS1, increasing the activity of GusA in the culture supernatant by nearly five times compared with that of SPlp_3050. Further, we fused SPlp_3050 and codon-optimized CXCL12 gene to construct an engineered probiotic strain Lpw-CXCL12 for CXCL12 delivery. The results demonstrated that the content of CXCL12 in the culture supernatant reached (13.40±0.20) μg/mL. Finally, we found that the engineered probiotic strain Lpw-CXCL12 accelerated chronic wound healing in a diabetic mouse model. In conclusion, these results support an engineered probiotic strain in promoting diabetic chronic wound healing, providing a new strategy and technological foundation for the management of diabetic chronic wounds in the future.
Probiotics
;
Animals
;
Chemokine CXCL12/biosynthesis*
;
Mice
;
Wound Healing
;
Lactobacillus plantarum/metabolism*
;
Diabetes Mellitus, Experimental/complications*
;
Male
5.Protective effect of Streptococcus salivarius K12 against Mycoplasma pneumoniae infection in mice.
Xiaoling SU ; Daoyong LIAO ; Chao LI ; Li CHEN ; Jingyun WANG ; Tian GAN ; Haodang LUO ; Ning WU ; Jun HE
Journal of Southern Medical University 2024;44(12):2300-2307
OBJECTIVES:
To investigate the protective effect of the probiotic bacterium Streptococcus salivarius K12 (K12) against Mycoplasma pneumoniae (Mp) infection in mice.
METHODS:
Forty male BALB/c mice were randomized into normal control group, K12 treatment group, Mp infection group, and K12 pretreatment prior to Mp infection group. The probiotic K12 was administered daily by gavage for 14 days before Mp infection induced by intranasal instillation of Mp. Three days after Mp infection, the mice were euthanized for analysis of bronchoalveolar lavage fluid (BALF) cell counts and serum levels of secretory immunoglobulin A (sIgA), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). RT-qPCR was performed to detect the P1 and community-acquired respiratory distress syndrome ( CARDS ) toxin of Mp in the lung tissues and the mRNA expressions of TNF-α, IL-6, chemokine 1 (CXCL1), matrix metalloproteinase 9 (MMP9), mucin 5ac (MUC5ac), collagen 3a1 (Col3a1), Toll-like receptor 2 (TLR2) and TLR4; the protein expressions of TLR2 and TLR4 in the lung tissue were detected using Western blotting. Pathological changes in the lung tissue and airway remodeling were examined with HE staining and AB/PAS staining.
RESULTS:
Compared with the Mp-infected mice with PBS treatment, the infected mice with K12 treatment showed significantly lowered mRNA levels of P1 and CARDS in the lung tissue and reduced white blood cell counts in the BALF (P<0.05). In spite of the absence of significant differences in serum levels of inflammatory factors between the two groups, the mRNA expressions of TNF‑α, IL-6, CXCL1, MMP9, MUC5ac and COL3A1 and the mRNA and protein levels of TLR2 and TLR4 in the lung tissues were significantly lower in K12-treated mice, in which AB/PAS staining showed obviously decreased mucus secretion.
CONCLUSIONS
K12 pretreatment can effectively reduce pulmonary inflammatory responses, improve airway remodeling and alleviate lung injury in Mp-infected mice.
Animals
;
Mice
;
Pneumonia, Mycoplasma/metabolism*
;
Mice, Inbred BALB C
;
Toll-Like Receptor 2/metabolism*
;
Mycoplasma pneumoniae
;
Male
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Lung/microbiology*
;
Toll-Like Receptor 4/metabolism*
;
Streptococcus salivarius
;
Probiotics/administration & dosage*
;
Bronchoalveolar Lavage Fluid
;
Matrix Metalloproteinase 9/metabolism*
;
Mucin 5AC/metabolism*
;
Chemokine CXCL1/metabolism*
;
Immunoglobulin A, Secretory/metabolism*
;
Bacterial Toxins
;
Bacterial Proteins
6.Establishment and application of chemically inducible chromosomal evolution in Escherichia coli Nissle 1917.
Yumei LIU ; Qingli ZHANG ; Lijun SHAO ; Xiaojing LIU ; Xiaoli YU
Chinese Journal of Biotechnology 2024;40(12):4594-4604
The probiotic strain Escherichia coli Nissle 1917 (EcN) with high biocompatibility and susceptibility to genetic modification is often applied in bacterial therapies for cancer. However, most studies have used plasmids as vectors to construct engineering strains from EcN. Plasmid-based expression systems suffer from genetic instability, and they need antibiotic selective pressure to maintain high copy number. This study aimed to employ EcN for synthesizing the photosensitizer 5-aminolevulinic acid (5-ALA). Firstly, the key genes of 5-ALA synthesis, hemAM and hemL, were integrated into the EcN genome by the phage integration technique. Then, chemically inducible chromosomal evolution (CIChE) was adopted to increase the copy number of hemAM and hemL and thus improved the stable synthesis of 5-ALA. The in vitro cell experiments verified that the constructed engineering strain can deliver stably synthesized 5-ALA to tumor cells and inhibit their growth. This study provided a basis for applying the engineering strains of EcN in the photodynamic therapy for tumors.
Escherichia coli/metabolism*
;
Aminolevulinic Acid/metabolism*
;
Photosensitizing Agents/pharmacology*
;
Plasmids/genetics*
;
Chromosomes, Bacterial/genetics*
;
Genetic Engineering
;
Humans
;
Probiotics
;
Photochemotherapy
7.Probiotics improves abnormal behavior and hippocampal injury in pregnant-stressed offspring rats.
Zhongjun HUANG ; Bin ZHANG ; Libin LIAO ; Jie CHEN ; Ruping ZHENG ; Deyang CAI ; Jufang HUANG
Journal of Central South University(Medical Sciences) 2022;47(4):443-452
OBJECTIVES:
During pregnancy, pregnant women are prone to stress reactions due to external stimuli, affecting their own health and fetal development. At present, there is no good treatment for the stress reactions from pregnant women during pregnancy. This study aims to explore the effect of probiotics on abnormal behavior and hippocampal injury in pregnant stressed offspring.
METHODS:
SD pregnant rats were divided into a control group, a stress group, and a probiotics group, with 6 rats in each group. The control group was untreated; the stress group was given restraint stress on the 15th-20th day of pregnancy; the probiotics group was given both bifidobacterium trisporus capsules and restraint stress on the 15th-20th day of pregnancy, and the offspring continued to be fed with probiotics until 60 days after birth (P60). The offspring rats completed behavioral tests such as the open field test, the elevated plus maze test, the new object recognition test, and the barnes maze test at 60-70 d postnatally. Nissl's staining was used to reflect the injury of hippocampal neurons; immunohistochemical staining was used to detect the expression of microglia marker ionized calcium binding adapter molecule 1 (IBA-1) which can reflect microglia activation; ELISA was used to detect the content of plasma TNF-α and IL-1β; Western blotting was used to detect the expression of Bax, Bcl-2, and caspase-3.
RESULTS:
The retention time of offspring rats in the stress group in the central area of the open field was significantly less than that in the control group (P<0.01), and the retention time of offspring rats in the probiotic group in the central area of the open field was significantly more than that in the stress group (P<0.05). The offspring rats in the stress group stayed in the open arm for a shorter time than the control group (P<0.05) and entered the open arm less often than the control group (P<0.01); the offspring rats in the probiotic group stayed in the open arm for a longer time than the stress group and entered the open arm more often than the stress group (both P<0.05). The discrimination ratio for new to old objects in the offspring rats of the stress group was significantly lower than that of the control group (P<0.01), and the discrimination ratio for new to old objects in the offspring rats of the probiotic group was significantly higher than that of the stress group (P<0.05). The offspring rats in the stress group made significantly more mistakes than the control group (P<0.05), and the offspring rats in the probiotic group made significantly fewer mistakes than the stress group (P<0.05). Compared with the control group, the numbers of Nissl bodies in CA1, CA3, and DG area were significantly reduced in the offspring rats of the stress group (all P<0.001), the number of activated microglia in DG area of hippocampus was significantly increased (P<0.01), the contents of TNF-α and IL-1β in peripheral blood were significantly increased (P<0.05 or P<0.01), the protein expression level of Bcl-2 was significantly down-regulated, and the protein expression levels of Bax and caspase-3 were significantly up-regulated (all P<0.001). Compared with the stress group, the numbers of Nissl bodies in CA1, CA3, and DG area were significantly increased in the probiotic group offspring rats (P<0.001, P<0.01, P<0.05), the number of activated microglia in the DG area of hippocampus was significantly reduced (P<0.05), and the TNF-α and IL-1β levels in peripheral blood were significantly decreased (both P<0.05), the protein expression level of Bcl-2 was significantly up-regulated, and the protein expression levels of Bax and caspase-3 were significantly down-regulated (all P<0.001).
CONCLUSIONS
Probiotic intervention partially ameliorated anxiety and cognitive impairment in rats offspring of pregnancy stress, and the mechanism may be related to increasing the number of neurons, inhibiting the activation of hippocampal microglia, and reducing inflammation and apoptosis.
Animals
;
Caspase 3/metabolism*
;
Female
;
Hippocampus/physiopathology*
;
Humans
;
Pregnancy
;
Probiotics/therapeutic use*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Rats
;
Stress, Psychological/therapy*
;
Tumor Necrosis Factor-alpha/metabolism*
;
bcl-2-Associated X Protein/metabolism*
8.Probiotic mixture VSL#3 prevents ulcerative colitis-associated carcinogenesis in mice and cells by regulating the inflammatory and Wnt/β-catenin pathway.
Wenbin LI ; Yanan WANG ; Chunsaier WANG ; Hongying WANG ; Yiming MA ; Hong YANG ; Xinhua ZHAO ; Xiaomin HU ; John Y KAO ; Jiaming QIAN ; Chung OWYANG ; Jingnan LI
Chinese Medical Journal 2022;135(19):2357-2359
9.Probiotics with anti-type 2 diabetes mellitus properties: targets of polysaccharides from traditional Chinese medicine.
Lun WU ; Yue GAO ; Yang SU ; Jing LI ; Wen-Chen REN ; Qiu-Hong WANG ; Hai-Xue KUANG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(9):641-655
Traditional Chinese medicine polysaccharides is a biologically active ingredient that is not easy to be digested. It is fermented by intestinal microflora to promote qualitative and selective changes in the composition of the intestinal microbiome, which often result in beneficial effects on the health of the host. People call it "prebiotics". In this review, we systematically summarized the anti-diabetic effect of traditional Chinese medicine polysaccharides. These polysaccharides regulate the metabolism of sugar and lipids by inter-influence with the intestinal microflora, and maintain human health, while improving type 2 diabetes-like symptoms such as high blood glucose, and abnormal glucose and lipid metabolism.
Blood Glucose/metabolism*
;
Diabetes Mellitus, Type 2/metabolism*
;
Humans
;
Lipids
;
Medicine, Chinese Traditional
;
Polysaccharides/pharmacology*
;
Probiotics/therapeutic use*
10.The Role of Gut Microbiota and Use of Probiotics in the Treatment of Upper Gastrointestinal Diseases
Moon Young LEE ; Suck Chei CHOI ; Yong Sung KIM
The Korean Journal of Helicobacter and Upper Gastrointestinal Research 2019;19(2):99-105
Gut microbiota have been known to play an essential role in host immunity and metabolism. Dysbiosis is associated with various gastrointestinal (GI) and other diseases such as cancers, metabolic diseases, allergies, and immunological disorders. So far, the role of gut microbiota has been studied mainly in lower GI disease but has recently been reported in upper GI diseases other than Helicobacter pylori infection, including Barrett's esophagus, esophageal carcinoma, gastric cancer, functional dyspepsia, and non-steroidal anti-inflammatory drug-induced small intestinal mucosal injury. Probiotics have some beneficial effect on these diseases, but the effects are strain specific.
Anti-Inflammatory Agents, Non-Steroidal
;
Barrett Esophagus
;
Dysbiosis
;
Dyspepsia
;
Gastrointestinal Diseases
;
Gastrointestinal Microbiome
;
Helicobacter Infections
;
Helicobacter pylori
;
Hypersensitivity
;
Metabolic Diseases
;
Metabolism
;
Microbiota
;
Probiotics
;
Stomach Neoplasms
;
Upper Gastrointestinal Tract

Result Analysis
Print
Save
E-mail