1.Xiangshao Granules Ameliorate Post-stroke Depression by Inhibiting Activation of Microglia and IDO1 Expression in Hippocampus and Prefrontal Cortex.
Cheng-Gang LI ; Lu-Shan XU ; Liang SUN ; Yu-Hao XU ; Xiang CAO ; Chen-Chen ZHAO ; Sheng-Nan XIA ; Qing-Xiu ZHANG ; Yun XU
Chinese journal of integrative medicine 2025;31(1):28-38
OBJECTIVE:
To investigate the therapeutic effect of Xiangshao Granules (XSG) on post-stroke depression (PSD) and explore the underlying mechanisms.
METHODS:
Forty-three C57BL/6J mice were divided into 3 groups: sham (n=15), PSD+vehicle (n=14), and PSD+XSG (n=14) groups according to a random number table. The PSD models were constructed using chronic unpredictable mild stress (CUMS) after middle cerebral artery occlusion (MCAO). The sham group only experienced the same surgical operation, but without MACO and CUMS stimulation. The XSG group received XSG (60 mg/kg per day) by gavage for 4 weeks. The mice in the sham and vehicle groups were given the same volume of 0.9% saline at the same time. The body weight and behavior tests including open field test, sucrose preference test, tail suspension test, and elevated plus-maze test, were used to validate the PSD mouse model. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining were used to evaluate the anti-inflammatory effects of XSG. The potential molecular mechanisms were explored and verified through network pharmacology analysis, Nissl staining, Western blot, ELISA, and RT-qPCR, respectively.
RESULTS:
The body weight and behavior tests showed that MCAO combined with CUMS successfully established the PSD models. XSG alleviated neuronal damage, reduced the expressions of pro-apoptotic proteins Caspase-3 and B-cell lymphoma-2 (BCL-2)-associated X (BAX), and increased the expression of anti-apoptotic protein BCL-2 in PSD mice (P<0.05 or P<0.01). XSG inhibited microglial activation and the expressions of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin (IL)-1 β, and IL-6 via the toll-like receptor 4/nuclear factor kappa-B signaling pathway in PSD mice (P<0.05 or P<0.01). Furthermore, XSG decreased the expression of indoleamine 2,3-dioxygenase1 (IDO1) and increased the concentration of 5-hydroxytryptamine in PSD mice (P<0.05 or P<0.01).
CONCLUSION
XSG could reverse the anxiety/depressionlike behaviors and reduce the neuronal injury in the hippocampus and prefrontal cortex of PSD mice, which may be a potential therapeutic agent for PSD.
Animals
;
Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism*
;
Depression/etiology*
;
Drugs, Chinese Herbal/therapeutic use*
;
Hippocampus/metabolism*
;
Male
;
Mice, Inbred C57BL
;
Prefrontal Cortex/pathology*
;
Microglia/metabolism*
;
Stroke/drug therapy*
;
Disease Models, Animal
;
Mice
;
Behavior, Animal/drug effects*
2.Alpha-synuclein Fibrils Inhibit Activation of the BDNF/ERK Signaling Loop in the mPFC to Induce Parkinson's Disease-like Alterations with Depression.
Zhuoran MA ; Yan XU ; Piaopiao LIAN ; Yi WU ; Ke LIU ; Zhaoyuan ZHANG ; Zhicheng TANG ; Xiaoman YANG ; Xuebing CAO
Neuroscience Bulletin 2025;41(6):951-969
Depression (Dep) is one of the most common concomitant symptoms of Parkinson's disease (PD), but there is a lack of detailed pathologic evidence for the occurrence of PD-Dep. Currently, the management of symptoms from both conditions using conventional pharmacological interventions remains a formidable task. In this study, we found impaired activation of extracellular signal-related kinase (ERK), reduced levels of transcription and translation, and decreased expression of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex (mPFC) of PD-Dep rats. We demonstrated that the abnormal phosphorylation of α-synuclein (pS129) induced tropomyosin-related kinase receptor type B (TrkB) retention at the neuronal cell membrane, leading to BDNF/TrkB signaling dysfunction. We chose SEW2871 as an ameliorator to upregulate ERK phosphorylation. The results showed that PD-Dep rats exhibited improvement in behavioral manifestations of PD and depression. In addition, a reduction in pS129 was accompanied by a restoration of the function of the BDNF/ERK signaling loop in the mPFC of PD-Dep rats.
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
;
alpha-Synuclein/metabolism*
;
Male
;
Prefrontal Cortex/drug effects*
;
Rats, Sprague-Dawley
;
Depression/metabolism*
;
MAP Kinase Signaling System/drug effects*
;
Rats
;
Parkinson Disease/metabolism*
;
Receptor, trkB/metabolism*
;
Phosphorylation
;
Disease Models, Animal
;
Signal Transduction
3.Modulation of Nicotine-Associated Behaviour in Rats By μ-Opioid Signals from the Medial Prefrontal Cortex to the Nucleus Accumbens Shell.
Feng ZHU ; Hirosato KANDA ; Hiroyuki NEYAMA ; Yuping WU ; Shigeki KATO ; Di HU ; Shaoqi DUAN ; Koichi NOGUCHI ; Yasuyoshi WATANABE ; Kazuto KOBAYASHI ; Yi DAI ; Yilong CUI
Neuroscience Bulletin 2024;40(12):1826-1842
Nicotine addiction is a concern worldwide. Most mechanistic investigations are on nicotine substance dependence properties based on its pharmacological effects. However, no effective therapeutic treatment has been established. Nicotine addiction is reinforced by environments or habits. We demonstrate the neurobiological basis of the behavioural aspect of nicotine addiction. We utilized the conditioned place preference to establish nicotine-associated behavioural preferences (NABP) in rats. Brain-wide neuroimaging analysis revealed that the medial prefrontal cortex (mPFC) was activated and contributed to NABP. Chemogenetic manipulation of µ-opioid receptor positive (MOR+) neurons in the mPFC or the excitatory outflow to the nucleus accumbens shell (NAcShell) modulated the NABP. Electrophysiological recording confirmed that the MOR+ neurons directly regulate the mPFC-NAcShell circuit via GABAA receptors. Thus, the MOR+ neurons in the mPFC modulate the formation of behavioural aspects of nicotine addiction via direct excitatory innervation to the NAcShell, which may provide new insight for the development of effective therapeutic strategies.
Animals
;
Nucleus Accumbens/drug effects*
;
Prefrontal Cortex/drug effects*
;
Nicotine/pharmacology*
;
Receptors, Opioid, mu/metabolism*
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Tobacco Use Disorder/metabolism*
;
Neurons/drug effects*
;
Neural Pathways/drug effects*
4.Microglial EPOR Contribute to Sevoflurane-induced Developmental Fine Motor Deficits Through Synaptic Pruning in Mice.
Danyi HE ; Xiaotong SHI ; Lirong LIANG ; Youyi ZHAO ; Sanxing MA ; Shuhui CAO ; Bing LIU ; Zhenzhen GAO ; Xiao ZHANG ; Ze FAN ; Fang KUANG ; Hui ZHANG
Neuroscience Bulletin 2024;40(12):1858-1874
Clinical researches including the Mayo Anesthesia Safety in Kids (MASK) study have found that children undergoing multiple anesthesia may have a higher risk of fine motor control difficulties. However, the underlying mechanisms remain elusive. Here, we report that erythropoietin receptor (EPOR), a microglial receptor associated with phagocytic activity, was significantly downregulated in the medial prefrontal cortex of young mice after multiple sevoflurane anesthesia exposure. Importantly, we found that the inhibited erythropoietin (EPO)/EPOR signaling axis led to microglial polarization, excessive excitatory synaptic pruning, and abnormal fine motor control skills in mice with multiple anesthesia exposure, and those above-mentioned situations were fully reversed by supplementing EPO-derived peptide ARA290 by intraperitoneal injection. Together, the microglial EPOR was identified as a key mediator regulating early synaptic development in this study, which impacted sevoflurane-induced fine motor dysfunction. Moreover, ARA290 might serve as a new treatment against neurotoxicity induced by general anesthesia in clinical practice by targeting the EPO/EPOR signaling pathway.
Animals
;
Sevoflurane/toxicity*
;
Microglia/drug effects*
;
Anesthetics, Inhalation/adverse effects*
;
Mice
;
Mice, Inbred C57BL
;
Receptors, Erythropoietin/metabolism*
;
Neuronal Plasticity/drug effects*
;
Male
;
Prefrontal Cortex/drug effects*
;
Erythropoietin/pharmacology*
;
Signal Transduction/drug effects*
5.Effects of maternal exposure to arsenic on social behavior and related gene expression in F2 male mice.
Soe-Minn HTWAY ; Takehiro SUZUKI ; Sanda KYAW ; Keiko NOHARA ; Tin-Tin WIN-SHWE
Environmental Health and Preventive Medicine 2021;26(1):34-34
BACKGROUND:
Arsenic is a developmental neurotoxicant. It means that its neurotoxic effect could occur in offspring by maternal arsenic exposure. Our previous study showed that developmental arsenic exposure impaired social behavior and serotonergic system in C3H adult male mice. These effects might affect the next generation with no direct exposure to arsenic. This study aimed to detect the social behavior and related gene expression changes in F2 male mice born to gestationally arsenite-exposed F1 mice.
METHODS:
Pregnant C3H/HeN mice (F0) were given free access to tap water (control mice) or tap water containing 85 ppm sodium arsenite from days 8 to 18 of gestation. Arsenite was not given to F1 or F2 mice. The F2 mice were generated by mating among control F1 males and females, and arsenite-F1 males and females at the age of 10 weeks. At 41 weeks and 74 weeks of age respectively, F2 males were used for the assessment of social behavior by a three-chamber social behavior apparatus. Histological features of the prefrontal cortex were studied by ordinary light microscope. Social behavior-related gene expressions were determined in the prefrontal cortex by real time RT-PCR method.
RESULTS:
The arsenite-F2 male mice showed significantly poor sociability and social novelty preference in both 41-week-old group and 74-week-old group. There was no significant histological difference between the control mice and the arsenite-F2 mice. Regarding gene expression, serotonin receptor 5B (5-HT 5B) mRNA expression was significantly decreased (p < 0.05) in the arsenite-F2 male mice compared to the control F2 male mice in both groups. Brain-derived neurotrophic factor (BDNF) and dopamine receptor D1a (Drd1a) gene expressions were significantly decreased (p < 0.05) only in the arsenite-F2 male mice of the 74-week-old group. Heme oxygenase-1 (HO-1) gene expression was significantly increased (p < 0.001) in the arsenite-F2 male mice of both groups, but plasma 8-hydroxy-2'-deoxyguanosine (8-OHdG) and cyclooxygenase-2 (COX-2) gene expression were not significantly different. Interleukin-1β (IL-1β) mRNA expression was significantly increased only in 41-week-old arsenite-F2 mice.
CONCLUSIONS
These findings suggest that maternal arsenic exposure affects social behavior in F2 male mice via serotonergic system in the prefrontal cortex. In this study, COX-2 were not increased although oxidative stress marker (HO-1) was increased significantly in arsnite-F2 male mice.
Animals
;
Arsenic/toxicity*
;
Arsenites/toxicity*
;
Behavior, Animal/drug effects*
;
Environmental Pollutants/toxicity*
;
Female
;
Gene Expression/drug effects*
;
Genetic Markers
;
Male
;
Maternal Exposure/adverse effects*
;
Mice
;
Mice, Inbred C3H
;
Oxidative Stress/genetics*
;
Prefrontal Cortex/drug effects*
;
Pregnancy
;
Prenatal Exposure Delayed Effects/psychology*
;
Reverse Transcriptase Polymerase Chain Reaction
;
Serotonin/metabolism*
;
Social Behavior
;
Sodium Compounds/toxicity*
6.A Context-Based Analgesia Model in Rats: Involvement of Prefrontal Cortex.
Lingchi XU ; Yalan WAN ; Longyu MA ; Jie ZHENG ; Bingxuan HAN ; Feng-Yu LIU ; Ming YI ; You WAN
Neuroscience Bulletin 2018;34(6):1047-1057
Cognition and pain share common neural substrates and interact reciprocally: chronic pain compromises cognitive performance, whereas cognitive processes modulate pain perception. In the present study, we established a non-drug-dependent rat model of context-based analgesia, where two different contexts (dark and bright) were matched with a high (52°C) or low (48°C) temperature in the hot-plate test during training. Before and after training, we set the temperature to the high level in both contexts. Rats showed longer paw licking latencies in trials with the context originally matched to a low temperature than those to a high temperature, indicating successful establishment of a context-based analgesic effect in rats. This effect was blocked by intraperitoneal injection of naloxone (an opioid receptor antagonist) before the probe. The context-based analgesic effect also disappeared after optogenetic activation or inhibition of the bilateral infralimbic or prelimbic sub-region of the prefrontal cortex. In brief, we established a context-based, non-drug dependent, placebo-like analgesia model in the rat. This model provides a new and useful tool for investigating the cognitive modulation of pain.
Action Potentials
;
drug effects
;
physiology
;
Analgesics
;
pharmacology
;
therapeutic use
;
Animals
;
Disease Models, Animal
;
Electric Stimulation
;
Female
;
In Vitro Techniques
;
Naloxone
;
pharmacology
;
Narcotic Antagonists
;
pharmacology
;
Optogenetics
;
Pain
;
drug therapy
;
pathology
;
physiopathology
;
Pain Measurement
;
drug effects
;
Pain Threshold
;
drug effects
;
physiology
;
Patch-Clamp Techniques
;
Physical Stimulation
;
Prefrontal Cortex
;
drug effects
;
metabolism
;
pathology
;
Pyramidal Cells
;
drug effects
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Time Factors
7.Cyproheptadine Regulates Pyramidal Neuron Excitability in Mouse Medial Prefrontal Cortex.
Yan-Lin HE ; Kai WANG ; Qian-Ru ZHAO ; Yan-Ai MEI
Neuroscience Bulletin 2018;34(5):759-768
Cyproheptadine (CPH), a first-generation antihistamine, enhances the delayed rectifier outward K current (I) in mouse cortical neurons through a sigma-1 receptor-mediated protein kinase A pathway. In this study, we aimed to determine the effects of CPH on neuronal excitability in current-clamped pyramidal neurons in mouse medial prefrontal cortex slices. CPH (10 µmol/L) significantly reduced the current density required to generate action potentials (APs) and increased the instantaneous frequency evoked by a depolarizing current. CPH also depolarized the resting membrane potential (RMP), decreased the delay time to elicit an AP, and reduced the spike threshold potential. This effect of CPH was mimicked by a sigma-1 receptor agonist and eliminated by an antagonist. Application of tetraethylammonium (TEA) to block I channels hyperpolarized the RMP and reduced the instantaneous frequency of APs. TEA eliminated the effects of CPH on AP frequency and delay time, but had no effect on spike threshold or RMP. The current-voltage relationship showed that CPH increased the membrane depolarization in response to positive current pulses and hyperpolarization in response to negative current pulses, suggesting that other types of membrane ion channels might also be affected by CPH. These results suggest that CPH increases the excitability of medial prefrontal cortex neurons by regulating TEA-sensitive I channels as well as other TEA-insensitive K channels, probably I and inward-rectifier Kir channels. This effect of CPH may explain its apparent clinical efficacy as an antidepressant and antipsychotic.
Animals
;
Cyproheptadine
;
pharmacology
;
Female
;
Histamine H1 Antagonists
;
pharmacology
;
Membrane Potentials
;
drug effects
;
physiology
;
Mice, Inbred C57BL
;
Patch-Clamp Techniques
;
Potassium Channel Blockers
;
pharmacology
;
Potassium Channels
;
metabolism
;
Prefrontal Cortex
;
drug effects
;
physiology
;
Pyramidal Cells
;
drug effects
;
physiology
;
Receptors, sigma
;
agonists
;
metabolism
;
Tetraethylammonium
;
pharmacology
;
Tissue Culture Techniques
8.Effects of Ketamine on Basal Gamma Band Oscillation and Sensory Gating in Prefrontal Cortex of Awake Rats.
Renli QI ; Jinghui LI ; Xujun WU ; Xin GENG ; Nanhui CHEN ; Hualin YU
Neuroscience Bulletin 2018;34(3):457-464
Gamma band oscillation (GBO) and sensory gating (SG) are associated with many cognitive functions. Ketamine induces deficits of GBO and SG in the prefrontal cortex (PFC). However, the time-courses of the effects of different doses of ketamine on GBO power and SG are poorly understood. Studies have indicated that GBO power and SG have a common substrate for their generation and abnormalities. In this study, we found that (1) ketamine administration increased GBO power in the PFC in rats differently in the low- and high-dose groups; (2) auditory SG was significantly lower than baseline in the 30 mg/kg and 60 mg/kg groups, but not in the 15 mg/kg and 120 mg/kg groups; and (3) changes in SG and basal GBO power were significantly correlated in awake rats. These results indicate a relationship between mechanisms underlying auditory SG and GBO power.
Acoustic Stimulation
;
Analysis of Variance
;
Animals
;
Dose-Response Relationship, Drug
;
Electroencephalography
;
Excitatory Amino Acid Antagonists
;
pharmacology
;
Gamma Rhythm
;
drug effects
;
Ketamine
;
pharmacology
;
Male
;
Prefrontal Cortex
;
drug effects
;
Rats
;
Rats, Sprague-Dawley
;
Sensory Gating
;
drug effects
;
Sleep Stages
;
drug effects
;
Statistics as Topic
;
Time Factors
;
Wakefulness
;
drug effects
9.Effect of 5-HT7 receptor agonist on pyramidal neurons in the medial frontal cortex in a rat model of Parkinson's disease.
Ling-Ling FAN ; Bo DENG ; Jun-Bao YAN ; Zhi-Hong HU ; Ai-Hong REN ; Yong-Mei HU ; Dong-Wei YANG
Journal of Southern Medical University 2016;36(6):756-762
OBJECTIVETo investigate the activity of pyramidal neurons in the medial prefrontal cortex (mPFC) of normal and 6-OHDA-lesioned rats and the responses of the neurons to 5-hydroxytryptamine-7 (5-HT(7)) receptor stimulation.
METHODSThe changes in spontaneous firing of the pyramidal neurons in the mPFC in response to 5-HT(7) receptor stimulation were observed by extracellular recording in normal and 6-OHDA-lesioned rats.
RESULTSBoth systemic and local administration of 5-HT(7) receptor agonist AS 19 resulted in 3 response patterns (excitation, inhibition and no change) of the pyramidal neurons in the mPFC of normal and 6-OHDA-lesioned rats. In normal rats, the predominant response of the pyramidal neurons to AS 19 stimulation was excitatory, and the inhibitory effect of systemically administered AS 19 was reversed by GABAA receptor antagonist picrotoxinin. In the lesioned rats, systemic administration of AS 19 also increased the mean firing rate of the pyramidal neurons, but the cumulative dose for producing excitation was higher than that in normal rats. Systemic administration of AS 19 produced an inhibitory effect in the lesioned rats, which was partially reversed by picrotoxinin. Local administration of AS 19 at the same dose did not change the ?ring rate of the neurons in the lesioned rats.
CONCLUSIONThe activity of mPFC pyramidal neurons is directly or indirectly regulated by 5-HT7 receptor, and degeneration of the nigrostriatal pathway leads to decreased response of these neurons to AS 19.
Action Potentials ; Animals ; Oxidopamine ; Parkinson Disease ; metabolism ; Prefrontal Cortex ; cytology ; Pyramidal Cells ; drug effects ; Rats ; Receptors, Serotonin ; metabolism ; Serotonin Receptor Agonists ; pharmacology
10.Effects of Citalopram on frontal cortical neurons' bax mRNA bcl-2 mRNA expression and cell apoptosis of rat after stress.
Ai-yue YU ; Xiao-hong SUN ; Xue-hong LIU ; Jin ZHOU ; Lan WANG
Chinese Journal of Applied Physiology 2015;31(5):455-461
OBJECTIVETo study the effects of Citalopram on the mRNA expression of bax and bel-2 in frontal cortical neurons and on cell apoptosis of rats after stress.
METHODSTwenty-four healthy male SD rats were randomly divided into three groups (n = 8). The control group did no receive any treatment, the stress group was subject to stress and given normal saline and experimental group was given Citalopram irrigation stomach after stress. Rats were forced to swim to establish chronic stress model (15 min/d, 4 weeks), bax, bcl-2 mRNA expression were tested by in situ hybridization technique (ISH), TUNEL assay was used to determine cell apoptosis, Nikon image analysis software were used to measure the number of positive cells in each index.
RESULTSCompared with the control group, the stress group showed a larger number of bax mRNA expressing cells( P < 0.01), a smaller number of bcl-2 mRNA expressing cells (P < 0.01), and the staining intensity of positive cells was significantly reduced( P < 0.01). Compared with the stress group, the experiment group showed more reduced number of bax mRNA positive cells( P < 0.01) and significantly increased bcl-2 mRNA positive cells( P < 0.05), a small amount of positive cells were found, compared with that in the stress group, nuclear condensation in the experimental group was reduced significantly and the staining was obviously weaker( P < 0.01).
CONCLUSIONCitalopram significantly antagonizes bax mRNA and potentiatesbcl-2 mRNA protein expression and inhibits apoptosis of rat prefrontal cortical neurons caused by chronic stress, which might be one possible mechanism of Citalopram for prevention and treatment of psychosis caused by chronic stress.
Animals ; Apoptosis ; Citalopram ; pharmacology ; Male ; Neurons ; drug effects ; metabolism ; Prefrontal Cortex ; cytology ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; RNA, Messenger ; Rats ; Rats, Sprague-Dawley ; Stress, Physiological ; bcl-2-Associated X Protein ; metabolism

Result Analysis
Print
Save
E-mail