1.(Meta)transcriptomic Insights into the Role of Ticks in Poxvirus Evolution and Transmission: A Multicontinental Analysis.
Yu Xi WANG ; Jing Jing HU ; Jing Jing HOU ; Xiao Jie YUAN ; Wei Jie CHEN ; Yan Jiao LI ; Qi le GAO ; Yue PAN ; Shui Ping LU ; Qi CHEN ; Si Ru HU ; Zhong Jun SHAO ; Cheng Long XIONG
Biomedical and Environmental Sciences 2025;38(9):1058-1070
OBJECTIVE:
Poxviruses are zoonotic pathogens that infect humans, mammals, vertebrates, and arthropods. However, the specific role of ticks in transmission and evolution of these viruses remains unclear.
METHODS:
Transcriptomic and metatranscriptomic raw data from 329 sampling pools of seven tick species across five continents were mined to assess the diversity and abundance of poxviruses. Chordopoxviral sequences were assembled and subjected to phylogenetic analysis to trace the origins of the unblasted fragments within these sequences.
RESULTS:
Fifty-eight poxvirus species, representing two subfamilies and 20 genera, were identified, with 212 poxviral sequences assembled. A substantial proportion of AT-rich fragments were detected in the assembled poxviral genomes. These genomic sequences contained fragments originating from rodents, archaea, and arthropods.
CONCLUSION
Our findings indicate that ticks play a significant role in the transmission and evolution of poxviruses. These viruses demonstrate the capacity to modulate virulence and adaptability through horizontal gene transfer, gene recombination, and gene mutations, thereby promoting co-existence and co-evolution with their hosts. This study advances understanding of the ecological dynamics of poxvirus transmission and evolution and highlights the potential role of ticks as vectors and vessels in these processes.
Animals
;
Poxviridae/physiology*
;
Ticks/virology*
;
Phylogeny
;
Transcriptome
;
Evolution, Molecular
;
Poxviridae Infections/virology*
;
Genome, Viral
2.Progress on host range factors and their mechanisms of poxvirus.
Gang BAI ; Huai-Jie JIA ; Xiao-Bing HE ; Zhi-Zhong JING
Chinese Journal of Virology 2013;29(6):655-661
Poxvirus is one of the most serious zoonosis pathogens, which has largest genome and broadest host spectrum. With the development of molecular biology, functional genomics, and immunology-related technology, the interactions between pathogen and the host, particularly a large array of host range factors and their functions have been increasingly discovered. These findings provide references for the molecular basis of poxvirus tissue tropism and host specificity. This review focus on the introduction of host range factors in major members of Chordopoxvirinae to highlight the understanding of the mechanisms of molecular genetic evolution, the host tropism, and cross-species infection of poxviruses.
Animals
;
Host Specificity
;
Host-Pathogen Interactions
;
Humans
;
Poxviridae
;
classification
;
genetics
;
isolation & purification
;
physiology
;
Poxviridae Infections
;
veterinary
;
virology
;
Viral Proteins
;
genetics
;
metabolism
3.Development and application of TaqMan-MGB real-time quantitative PCR assay for detection of goat pox virus.
Zhentao CHENG ; Jun YUE ; Yongming LI ; Leren XU ; Kaigong WANG ; Bijun ZHOU ; Junyi CHEN ; Jun LI ; Nan JIANG
Chinese Journal of Biotechnology 2009;25(3):464-472
The complete gene sequences of eight capripoxvirus strains in GenBank were aligned and analyzed with DNAStar software. We selected a size of 64 bp gene fragment that was located in gp064 region of goat pox virus (GPV) genome, and designed a pair of primers and a TaqMan-MGB probe against the gene fragment with Primer Express 2.0 software. Then, the fluorescence quantitative PCR (FQ-PCR) assay was developed and the standard curve of different dilution series was described. We extracted the DNA samples from clinical skin pox, scab and GPV infected materials of artificial challenge animals. The FQ-PCR assay has been performed for all kinds of DNA samples. The results showed that the FQ-PCR assay was sensitive, specific, stable and could be used for clinical diagnosis. This method provided an important tool for rapid diagnosis of goat pox clinically, and for study GPV pathogenesis in the course of disease occurrence, development and convalescence.
Animals
;
Base Sequence
;
Capripoxvirus
;
genetics
;
isolation & purification
;
Goats
;
Molecular Sequence Data
;
Polymerase Chain Reaction
;
methods
;
Poxviridae Infections
;
diagnosis
;
virology
;
Sensitivity and Specificity

Result Analysis
Print
Save
E-mail