1.Efficient expression and biological activity characterization of human potassium channel KV3.1 in an Escherichia coli cell-free protein synthesis system.
Zitong ZHAO ; Tianqi ZHOU ; Yunyang SONG ; Fanghui WU ; Yifeng YIN ; Yanli LIU
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):1000-1006
Objective This study aims to achieve high-yield functional expression of the human voltage-gated potassium channel KV3.1 using an Escherichia coli cell-free protein synthesis system, thereby providing a novel synthetic approach for drug screening, structural analysis and functional characterization of KV3.1. Methods KV3.1 was expressed in an Escherichia coli cell-free protein synthesis system for 10 hours in the presence of peptide surfactant A6K. The secondary structure of KV3.1 was analyzed by circular dichroism spectroscopy. The potassium channel activity of the recombinant protein liposome KV3.1-A6K was investigated using fluorescent dyes Oxonol VI as indicators, which are capable of reflecting alterations in membrane potential. Results Soluble KV3.1 protein was successfully synthesized, achieving a purified yield of up to 1.2 mg/mL via an Escherichia coli cell-free protein synthesis system. Circular dichroism spectroscopy revealed that KV3.1 exhibited characteristic α-helical secondary structures. Membrane potential fluorescence assays demonstrated that the KV3.1-A6K proteoliposomes, which were reconstructed with surfactant peptide A6K, exhibited remarkable potassium ion permeability. Conclusion This study successfully achieved high-yield expression of human KV3.1 with activity using an Escherichia coli-based cell-free protein synthesis system. This innovative method not only significantly enhances the expression yield of KV3.1, but also maintains its functional activity, thereby establishing a novel and efficient synthetic platform for drug screening and advancing our understanding of structure-function relationships in KV3.1 research.
Humans
;
Escherichia coli/metabolism*
;
Shaw Potassium Channels/biosynthesis*
;
Cell-Free System
;
Circular Dichroism
;
Protein Biosynthesis
;
Recombinant Proteins/metabolism*
;
Membrane Potentials
;
Shab Potassium Channels
2.Electrophysiological Abnormalities and Pharmacological Corrections of Pathogenic Missense Variants in KCNQ3.
Xiaorong WU ; Jili GONG ; Li QIU ; Guimei YANG ; Hui YUAN ; Xiangchun SHEN ; Yanwen SHEN ; Fuyun TIAN ; Zhaobing GAO
Neuroscience Bulletin 2025;41(9):1511-1521
The KCNQ potassium channels play a crucial role in modulating neural excitability, and their dysfunction is closely associated with epileptic disorders. While variants in KCNQ2 have been extensively studied, KCNQ3-related disorders have rarely been reported. With advances in next-generation sequencing technologies, an increasing number of cases of KCNQ3-related disorders have been identified. However, the correlation between genotype and phenotype remains poorly understood. In this study, we established a variant library consisting of 24 missense mutations in KCNQ3 and introduced these mutations into three different template types: KCNQ3, KCNQ3-A315T (Q3*), and KCNQ3-KCNQ2 tandem (Q3-Q2). We then analyzed the effects of these mutations on the KCNQ3 channel function using patch-clamp recording. The most informative parameter across all three backgrounds was the current density of the mutant channels. The current density patterns in the Q3* and Q3-Q2 backgrounds were similar, with most mutations resulting in an almost complete loss of function (LOF), they were concentrated in the pore-forming domain of KCNQ3. In contrast, mutations in the voltage-sensing domain or C-terminus did not show significant differences from the wild-type channel. Interestingly, these LOF mutations were typically associated with self-limited familial neonatal epilepsy, while neurodevelopmental disorders (NDD) were more closely associated with mutations that did not significantly differ from the wild-type. V1/2, another important parameter of the electrophysiological properties, could not be accurately determined in the majority of KCNQ3 mutations due to its nearly complete LOF in the Q3* and Q3-Q2 backgrounds. Intriguingly, the V1/2 of functional mutations were primarily leftward shifted, indicating a gain-of-function (GOF) effect, which was typically associated with NDD. In addition to previously reported mutations, we identified G553R as a novel GOF mutation. In the co-transfection background, parameters such as V1/2 could be determined, but the dysfunctional effects of these mutations were mitigated by the co-expression of wild-type KCNQ3 and KCNQ2 subunits, resulting in no significant differences between most mutations and the wild-type channel. Furthermore, we applied KCNQ modulators to reverse the electrophysiological abnormalities caused by KCNQ3 variants. The LOF mutations were reversed by the application of Pynegabine (HN37), a KCNQ opener, while the GOF mutation responded well to Amitriptyline (AMI), a KCNQ inhibitor. These findings provide essential insights into the pathogenic mechanisms underlying KCNQ3-related disorders and may inform clinical decision-making.
KCNQ3 Potassium Channel/genetics*
;
Humans
;
Mutation, Missense/genetics*
;
KCNQ2 Potassium Channel/genetics*
;
Patch-Clamp Techniques
;
HEK293 Cells
;
Animals
;
Phenylenediamines/pharmacology*
;
Carbamates
5.Protein Kinase C Controls the Excitability of Cortical Pyramidal Neurons by Regulating Kv2.2 Channel Activity.
Zhaoyang LI ; Wenhao DONG ; Xinyuan ZHANG ; Jun-Mei LU ; Yan-Ai MEI ; Changlong HU
Neuroscience Bulletin 2022;38(2):135-148
The family of voltage-gated potassium Kv2 channels consists of the Kv2.1 and Kv2.2 subtypes. Kv2.1 is constitutively highly phosphorylated in neurons and its function relies on its phosphorylation state. Whether the function of Kv2.2 is also dependent on its phosphorylation state remains unknown. Here, we investigated whether Kv2.2 channels can be phosphorylated by protein kinase C (PKC) and examined the effects of PKC-induced phosphorylation on their activity and function. Activation of PKC inhibited Kv2.2 currents and altered their steady-state activation in HEK293 cells. Point mutations and specific antibodies against phosphorylated S481 or S488 demonstrated the importance of these residues for the PKC-dependent modulation of Kv2.2. In layer II pyramidal neurons in cortical slices, activation of PKC similarly regulated native Kv2.2 channels and simultaneously reduced the frequency of action potentials. In conclusion, this study provides the first evidence to our knowledge that PKC-induced phosphorylation of the Kv2.2 channel controls the excitability of cortical pyramidal neurons.
Action Potentials
;
HEK293 Cells
;
Humans
;
Protein Kinase C/metabolism*
;
Pyramidal Cells/enzymology*
;
Shab Potassium Channels/genetics*
6.The Kv12 voltage-gated K
Lan MA ; Ao-Qi KANG ; Wei LIU ; Xiao-Jun NIE ; Yan-Ming TIAN ; Fang YUAN
Acta Physiologica Sinica 2021;73(2):217-222
Accumulating evidence demonstrates that the nucleus tractus solitarii (NTS) neurons serve as central respiratory chemoreceptors, but the underlying molecular mechanisms remain undefined. The present study investigated the expression of acid-sensitive ether-à-go-go-gene-like (Elk, Kv12) channels in the NTS of mice. Immunofluorescence staining was used to observe the distribution and cellular localization of the Kv12 channels in NTS neurons. Western blot and quantitative real-time PCR (qPCR) were used to evaluate protein and mRNA expression levels of Kv12 channels. The results showed that all of the three members (Kv12.1, Kv12.2, Kv12.3) of the Kv12 channel family were expressed in NTS neurons, and their expressions were co-localized with paired-like homeobox 2b gene (Phox2b) expression. The expression of Kv12.1 mRNA was the largest, whereas the expression of Kv12.3 was the least in the NTS. The results suggest Kv12 channels are expressed in Phox2b-expressing neurons in the NTS of mice, which provides molecular evidence for pH sensitivity in Phox2b-expressing NTS neurons.
Animals
;
Mice
;
Neurons
;
Potassium Channels, Voltage-Gated
;
Solitary Nucleus
;
Transcription Factors/genetics*
7.Effects of magnetic stimulation at different frequencies on neuronal excitability and voltage-gated potassium channels
Xiaonan YIN ; Guizhi XU ; Haijun ZHU ; Rui FU ; Yang LI ; Chong DING
Journal of Biomedical Engineering 2021;38(2):224-231
As a noninvasive neuromodulation technique, transcranial magnetic stimulation (TMS) is widely used in the clinical treatment of neurological and psychiatric diseases, but the mechanism of its action is still unclear. The purpose of this paper is to investigate the effects of different frequencies of magnetic stimulation (MS) on neuronal excitability and voltage-gated potassium channels in the
Action Potentials
;
Animals
;
Magnetic Phenomena
;
Mental Disorders
;
Mice
;
Neurons
;
Patch-Clamp Techniques
;
Potassium Channels, Voltage-Gated
8.Long non-coding RNA potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 regulates the proliferation and osteogenic differentiation of human periodontal ligament stem cells by targeting miR-24-3p.
Ming PANG ; Hong-Xia WEI ; Xi CHEN
West China Journal of Stomatology 2021;39(5):547-554
OBJECTIVES:
This study aims to explore the effect and molecular mechanism of long non-coding RNA (lncRNA) potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (KCNQ1OT1) on proliferation and osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs).
METHODS:
The hPDLSCs of normal periodontal tissues were isolated and cultured. The mineralized solution induced the osteoblast differentiation of hPDLSCs. The down-regulation of lncRNA KCNQ1OT1, the overexpression of anti-miR-24-3p on the proliferation and the levels of osteocalcin (OCN), osteopontin (OPN) and alkaline phosphatase (ALP) of hPDLSCs were investigated. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the levels of lncRNA KCNQ1OT1, miR-24-3p, OCN, OPN, and ALP. Methyl thiazolyl tetrazolium (MTT) method was used to detect cell viability and activity. Cell proliferation was evaluated by MTT. Western blot was used to detect protein expression. The targeted relationship between lncRNA KCNQ1OT1 and miR-24-3p was detected by double-luciferase experiment.
RESULTS:
The expression level of lncRNA KCNQ1OT1 increased, and that of miR-24-3p decreased during the osteogenesis of hPDLSCs (
CONCLUSIONS
Down-regulation of lncRNA KCNQ1OT1 inhibited the proliferation and osteogenic differentiation of hPDLSCs by targeting the up-regulated expression of miR-24-3p.
Cell Differentiation
;
Cell Proliferation
;
Humans
;
MicroRNAs/genetics*
;
Osteogenesis
;
Periodontal Ligament/cytology*
;
Potassium
;
Potassium Channels, Voltage-Gated
;
RNA, Long Noncoding/genetics*
;
Stem Cells/cytology*
9.Expression of KCNA2 in the dorsal root ganglia of rats with osteoarthritis pain induced by monoiodoacetate.
Qihong ZHAO ; Qiyou WANG ; Jie XU ; Jiafeng WANG ; Xiaoming DENG
Journal of Southern Medical University 2019;39(5):579-585
OBJECTIVE:
To investigate the changes in the expression of voltage-gated potassium channel subunit KCNA2 in the dorsal root ganglion (DRG) neurons of rats with osteoarthritis (OA) pain induced by sodium monoiodoacetate and explore the mechanism.
METHODS:
A total of 156 adult male Sprague-Dawley rats were randomly divided into blank control group, saline group and intra-articular monoiodoacetate injection-induced OA group. The paw withdrawal mechanical threshold (PWMT) was measured before and at 1, 2, 4, and 6 weeks after monoiodoacetate injection. At 4 weeks after the injection, the pathological changes in the knee joints were analyzed using HE staining and Safranin O-Fast Green staining, and the expression of activating transcription factor 3 (ATF-3) and inducible nitric oxide synthase (iNOS) in the DRG neurons were detected by immunofluorescence staining. The expression of mRNA in the DRG neurons was detected by RT-qPCR at 1, 2, 4 and 6 weeks after the injection. The expression of KCNA2 in the DRG was measured by Western blotting, and the methylation level of promoter region was measured by MSPCR at 4 weeks after the injection.
RESULTS:
The PWMT of the rats in OA group was significantly decreased at 2, 4, and 6 weeks after the injection as compared with the baseline ( < 0.05 or < 0.001) as well as the control group ( < 0.05 or < 0.001). Four weeks after the intra-articular injection, fractures and defects on the surface of the articular cartilage, bone hyperplasia, and blurred tidal line were observed in the rats in OA group, but no obvious pathological changes were detected in the control or saline groups. Compared with those in the control group, the expressions of ATF-3 and iNOS were significantly increased ( < 0.01) at 4 weeks after injection; the expression of mRNA at 2, 4 and 6 weeks and the expression of KCNA2 protein at 4 weeks were all significantly decreased ( < 0.05 or < 0.01), and the methylation level of gene was significantly increased at 4 weeks after the injection in OA group ( < 0.01).
CONCLUSIONS
The expression of KCNA2 is decreased in the DRG neurons of rats with OA pain likely as a result of enhanced methylation of promoter region.
Animals
;
Disease Models, Animal
;
Ganglia, Spinal
;
Knee Joint
;
Kv1.2 Potassium Channel
;
metabolism
;
Male
;
Osteoarthritis
;
complications
;
metabolism
;
Pain
;
etiology
;
metabolism
;
Promoter Regions, Genetic
;
Rats
;
Rats, Sprague-Dawley
10.Antidepressant drug paroxetine blocks the open pore of Kv3.1 potassium channel.
Hyang Mi LEE ; Ok Hee CHAI ; Sang June HAHN ; Bok Hee CHOI
The Korean Journal of Physiology and Pharmacology 2018;22(1):71-80
In patients with epilepsy, depression is a common comorbidity but difficult to be treated because many antidepressants cause pro-convulsive effects. Thus, it is important to identify the risk of seizures associated with antidepressants. To determine whether paroxetine, a very potent selective serotonin reuptake inhibitor (SSRI), interacts with ion channels that modulate neuronal excitability, we examined the effects of paroxetine on Kv3.1 potassium channels, which contribute to highfrequency firing of interneurons, using the whole-cell patch-clamp technique. Kv3.1 channels were cloned from rat neurons and expressed in Chinese hamster ovary cells. Paroxetine reversibly reduced the amplitude of Kv3.1 current, with an IC₅₀ value of 9.43 µM and a Hill coefficient of 1.43, and also accelerated the decay of Kv3.1 current. The paroxetine-induced inhibition of Kv3.1 channels was voltage-dependent even when the channels were fully open. The binding (k₊₁) and unbinding (k₋₁) rate constants for the paroxetine effect were 4.5 µM⁻¹s⁻¹ and 35.8 s⁻¹, respectively, yielding a calculated K(D) value of 7.9 µM. The analyses of Kv3.1 tail current indicated that paroxetine did not affect ion selectivity and slowed its deactivation time course, resulting in a tail crossover phenomenon. Paroxetine inhibited Kv3.1 channels in a usedependent manner. Taken together, these results suggest that paroxetine blocks the open state of Kv3.1 channels. Given the role of Kv3.1 in fast spiking of interneurons, our data imply that the blockade of Kv3.1 by paroxetine might elevate epileptic activity of neural networks by interfering with repetitive firing of inhibitory neurons.
Animals
;
Antidepressive Agents
;
Clone Cells
;
Comorbidity
;
Cricetinae
;
Cricetulus
;
Depression
;
Epilepsy
;
Female
;
Fires
;
Humans
;
Interneurons
;
Ion Channels
;
Neurons
;
Ovary
;
Paroxetine*
;
Patch-Clamp Techniques
;
Rats
;
Seizures
;
Serotonin
;
Shaw Potassium Channels*
;
Tail

Result Analysis
Print
Save
E-mail