1.Berberine promotes expression of AQP4 in astrocytes by regulating production of miR-383-5p in HepG2 cell-derived exosomes under insulin resistance.
Xue-Ling LIN ; Ying LI ; Meng-Qing GUO ; Yan-Jun ZHANG ; Qing-Sheng YIN ; Peng-Wei ZHUANG
China Journal of Chinese Materia Medica 2025;50(3):768-775
This study aims to explore the role and mechanism of berberine in promoting the expression of aquaporin 4(AQP4) in astrocytes by regulating the expression of miR-383-5p in HepG2 cell-derived exosomes under insulin resistance(IR). The IR-HepG2 cell model was established with 1×10~(-6) mol·L~(-1) insulin. With metformin as the positive control, the safe concentrations of berberine and metformin were screened by cell counting kit-8(CCK-8) and lactate dehydrogenase(LDH) leakage assays, and the effect of berberine on the IR of HepG2 cells was evaluated by glucose consumption. NanoSight was used to measure the particle size and concentration of exosomes secreted by HepG2 cells in each group. HepG2 cell-derived exosomes in each group were incubated with astrocytes for 24 h, and the protein and mRNA levels of AQP4 in HA1800 cells were determined by Western blot and qRT-PCR, respectively. qRT-PCR was performed to determine the expression of miR-383-5p in HepG2 cell-derived exosomes and HA1800 cells after co-incubation. Western blotting was employed to determine the expression levels of miRNAs and proteins associated with exosome production and release in HepG2 cells. The results showed that 10 μmol·L~(-1) berberine and 1 mmol·L~(-1) metformin significantly alleviated the IR of HepG2 cells and reduced the concentration of exosomes in HepG2 cells. The exosomes of HepG2 cells treated with berberine and metformin significantly up-regulated the protein and mRNA levels of AQP4 in HA1800 cells. The mRNA level of miR-383-5p in HepG2 cell exosomes and HA1800 cells co-incubated with berberine and metformin decreased significantly. The intervention with berberine and metformin significantly down-regulated the expression of proteins associated with the production of miRNAs(Dicer, Drosha) as well as the production(Alix, Vps4A) and release(Rab35, VAMP3) of exosomes in IR-HepG2 cells. In conclusion, berberine can promote the expression of AQP4 in astrocytes by inhibiting the production and release of miR-383-5p in HepG2-derived exosomes under IR.
Humans
;
MicroRNAs/metabolism*
;
Berberine/pharmacology*
;
Hep G2 Cells
;
Exosomes/genetics*
;
Aquaporin 4/metabolism*
;
Insulin Resistance
;
Astrocytes/drug effects*
2.Effect of Modified Yiyi Fuzi Baijiang Powder on intestinal mucosal permeability and expression of AQP3, AQP4 in ulcerative colitis rats.
Wen-Xiao LI ; Jiang CHEN ; Zhi-Cheng HE ; Lu-Rong ZHANG ; Guo-Qiang LIANG ; Xing-Xing JIANG ; Yong-Na WEI ; Qin ZHOU
China Journal of Chinese Materia Medica 2025;50(14):3962-3968
This study investigated the therapeutic effects and mechanisms of Modified Yiyi Fuzi Baijiang Powder on ulcerative colitis(UC) in rats from the perspective of dampness. SD rats were randomly allocated into six groups(n=10): control, model, mesalazine, and Modified Yiyi Fuzi Baijiang Powder at low(3.96 g·kg~(-1)·d~(-1)), medium(7.92 g·kg~(-1)·d~(-1)), and high(15.84 g·kg~(-1)·d~(-1)) doses. UC was induced in all groups except the control by administration with 3% dextran sulfate sodium(DSS) solution for 7 days. The disease activity index(DAI) was recorded, and the colon tissue was collected for analysis. Histopathological changes were assessed by hematoxylin-eosin staining. Serum levels of D-lactic acid(D-LA) and diamine oxidase(DAO) were measured by ELISA. Immunohistochemistry and PCR were employed to evaluate the expression of aquaporins(AQP3, AQP4) and tight junction proteins [zonula occludens-1(ZO-1) and occludin] at both protein and mRNA levels. Compared with the control group, the model group showed an increased DAI scores(P<0.05), intestinal mucosal damage, elevated serum levels of DAO and D-LA(P<0.05), and decreased expression of AQP3, AQP4, ZO-1, and occludin(P<0.05). Treatment with Modified Yiyi Fuzi Baijiang Powder reduced the DAI scores(P<0.05), lowered the serum levels of D-LA and DAO(P<0.05), and upregulated the expression of AQP3, AQP4, ZO-1, and occludin at both protein and mRNA levels compared with the model group. These findings suggest that Modified Yiyi Fuzi Baijiang Powder exerts therapeutic effects on UC by reducing the intestinal mucosal permeability, promoting colonic mucosal repair, and regulating abnormal intestinal water metabolism, which may involve the upregulation of AQP3 and AQP4 expression.
Animals
;
Colitis, Ulcerative/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Intestinal Mucosa/metabolism*
;
Male
;
Aquaporin 3/metabolism*
;
Aquaporin 4/metabolism*
;
Permeability/drug effects*
;
Humans
;
Powders
;
Intestinal Barrier Function
3.Effect of aquaporin 5 on TLR4/MyD88/NF-κB signaling pathway in Sjögren syndrome rats.
Lixiu ZHU ; Renli CHEN ; Sujuan ZHOU ; Ye LIN ; Yirong TANG ; Zhen YE
Journal of Peking University(Health Sciences) 2025;57(5):875-883
OBJECTIVE:
To investigate the effect of aquaporin 5 (AQP5) on Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor κB (NF-κB) signaling pathway in Sjögren syndrome (SS) rats.
METHODS:
The SS gene expression data sets GSE406611 and GSE84844 were extracted from the Gene Expression Omnibus (GEO), and the AQP5 mRNA expression was analyzed by R software. The rat SS model was constructed. The successfully modeled rats were divided into SS group, SS+NC group, and SS+pc group, 10 rats in each group; and 10 rats were set as Normal group. The rats in the SS+NC group were injected with 10 μg of rno-pcDNA3.1-AQP5-NC at the submandibular gland, subcutaneously every day for 28 days. The rats in the SS+pc group were injected with 10 μg of rno-pcDNA3.1-AQP5 at the submandibular gland, subcutaneously every day for 28 days. The enzyme-linked immunosorbent assay (ELISA) kit was used to detect the content of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the serum. High-throughput sequencing was used to identify the target genes. Quantitative real-time PCR (qPCR) and Western blot were used to detect the mRNA and protein expressions of AQP5, TLR4, MyD88, and NF-κB in the rat submandibular gland tissue.
RESULTS:
In the SS dataset GSE406611 and GSE84844, the mRNA expression of AQP5 in SS was significantly reduced. Compared with the Normal group, the content of TNF-α and IL-1β in the serum, the mRNA and protein expressions of TLR4, MyD88, and NF-κB in the SS group were significantly increased, the mRNA and protein expressions of AQP5 were significantly decreased. After overexpression of AQP5, the content of TNF-α and IL-1β in the serum, the mRNA and protein expressions of TLR4, MyD88, and NF-κB in the SS+pc group were significantly decreased, the mRNA and protein expressions of AQP5 were significantly increased. The differences were statistically significant (all P < 0.05).
CONCLUSION
The expression of AQP5 is involved in the progression of SS. Increasing the expression of AQP5 can significantly inhibit inflammatory stress and reduce the pathological damage of submandibular gland tissue. This may be related to the inhibition of TLR4/MyD88/NF-κB conduction.
Animals
;
Toll-Like Receptor 4/genetics*
;
Myeloid Differentiation Factor 88/genetics*
;
Aquaporin 5/metabolism*
;
Sjogren's Syndrome/genetics*
;
Signal Transduction
;
NF-kappa B/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Interleukin-1beta/metabolism*
;
Female
4.Inhibition of ferroptosis alleviates acute kidney injury caused by diquat in zebrafish.
Zejin OU ; Ying LI ; Shi CHEN ; Ziyi WANG ; Meiyi HE ; Zhicheng CHEN ; Shihao TANG ; Xiaojing MENG ; Zhi WANG
Journal of Southern Medical University 2025;45(8):1743-1750
OBJECTIVES:
To investigate the role of ferroptosis in diquat-induced acute kidney injury (AKI) and its molecular mechanisms.
METHODS:
Transgenic zebrafish models with Tg (Eco.Tshb:EGFP) labeling of the renal tubules and Tg (lyz:dsRed2) labeling of the neutrophils were both divided into control group, gentamicin (positive control) group, diquat poisoning group, ferroptosis inhibitor group. The indicators of kidney injury, inflammatory response, and ferroptosis were examined in the zebrafish, and the changes in expressions of voltage-dependent anion-selective channel protein 1 (VDAC1) and mitochondrial ferritin (FTMT) were detected using Western blotting.
RESULTS:
AKI induced by diquat exhibited a significant dose-effect relationship, and the severity of injury was proportional to the exposure concentration. Diquat also caused marked oxidative stress and inflammatory responses in the zebrafish models. Rhodamine metabolism assay and HE staining revealed significantly declined glomerular filtration function of the zebrafish as diquat exposure concentration increased. Immunofluorescence staining highlighted significant changes in the expressions of ferroptosis markers GPX4 and FTH1 in zebrafish renal tissues following diquat exposure. In diquat-exposed zebrafish, treatment with ferrostatin-1, a ferroptosis inhibitor, obviously upregulated GPX4 and downregulated FTH1 expressions and improved the metabolic rate of glucan labeled with rhodamine B. Diquat exposure significantly upregulated the expression of VDAC1 and FTMT in zebrafish, and the application of ferrostatin-1 and VBIT-12 (a VDAC1 inhibitor) both caused pronounced downregulation of FTMT expression.
CONCLUSIONS
Ferroptosis is a critical mechanism underlying diquat-induced AKI, in which VDAC1 and FTMT play important regulatory roles, suggesting their potential as therapeutic target for AKI caused by diquat.
Animals
;
Zebrafish
;
Ferroptosis/drug effects*
;
Acute Kidney Injury/chemically induced*
;
Diquat/toxicity*
;
Animals, Genetically Modified
;
Voltage-Dependent Anion Channel 1/metabolism*
;
Ferritins/metabolism*
;
Oxidative Stress
5.Salvianolic Acid B and Ginsenoside Rg1 Combination Attenuates Cerebral Edema Accompanying Glymphatic Modulation.
Lingxiao ZHANG ; Yanan SHAO ; Zhao FANG ; Siqi CHEN ; Yixuan WANG ; Han SHA ; Yuhan ZHANG ; Linlin WANG ; Yi JIN ; Hao CHEN ; Baohong JIANG
Neuroscience Bulletin 2025;41(11):1909-1923
Cerebral edema is characterized by fluid accumulation, and the glymphatic system (GS) plays a pivotal role in regulating fluid transport. Using the Tenecteplase system, magnesium salt of salvianolic acid B/ginsenoside Rg1 (SalB/Rg1) was injected intravenously into mice 4.5 h after middle cerebral artery occlusion and once every 24 h for the following 72 h. GS function was assessed by Evans blue imaging, near-infrared fluorescence region II (NIR-II) imaging, and magnetic resonance imaging (MRI). SalB/Rg1 had significant effects on reducing the infarct volume and hemorrhagic transformation score, improving neurobehavioral function, and protecting tissue structure, especially inhibiting cerebral edema. Meanwhile, the influx/efflux drainage of GS was enhanced by SalB/Rg1 according to NIR-II imaging and MRI. SalB/Rg1 inhibited matrix metalloproteinase-9 (MMP-9) activity, reduced cleaved β-dystroglycan (β-DG), and stabilized aquaporin-4 (AQP4) polarity, which was verified by colocalization with CD31. Our findings indicated that SalB/Rg1 treatment enhances GS function and attenuates cerebral edema, accompanying the regulation of the MMP9/β-DG/AQP4 pathway.
Animals
;
Ginsenosides/administration & dosage*
;
Brain Edema/etiology*
;
Male
;
Benzofurans/administration & dosage*
;
Glymphatic System/diagnostic imaging*
;
Mice
;
Infarction, Middle Cerebral Artery/drug therapy*
;
Aquaporin 4/metabolism*
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Matrix Metalloproteinase 9/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Depsides
6.Research progress in silver ion tolerance mechanisms of Escherichia coli.
Yuhuang WU ; Xi ZHENG ; Haoyue AN ; Shuchu SHEN ; Zhongbao WU ; Su ZHOU ; Jun WANG ; Lili ZOU
Chinese Journal of Biotechnology 2025;41(4):1252-1267
Due to the wide application of silver-containing dressings and silver-coated medical devices in clinical treatment; the extensive use of antibacterial agents and heavy metal agents in feed factories, Escherichia coli has formed the tolerance to silver ions. To systematically understand the known silver ion resistance mechanisms of E. coli, this article reviews the complex regulatory network and various physiological mechanisms of silver ion tolerance in E. coli, including the regulation of outer membrane porins, energy metabolism modulation, the role of efflux systems, motility regulation, and silver ion reduction. E. coli reduces the influx of silver ions by missing or mutating outer membrane porins such as OmpR, OmpC, and OmpF. It adapts to high concentrations of silver ions by altering the expression of ArcA/B and enhances the efflux capacity of silver ions under high-concentration silver stress via the endogenous Cus system and exogenous Sil system. Furthermore, the motility of bacteria is related to silver tolerance. E. coli has the ability to reduce silver ions, thereby alleviating the oxidative stress induced by silver ions. These findings provide a new perspective for understanding the formation and spread of bacterial tolerance and provide directions for the development of next-generation silver-based antimicrobials and therapies.
Escherichia coli/genetics*
;
Silver/pharmacology*
;
Drug Resistance, Bacterial
;
Anti-Bacterial Agents/pharmacology*
;
Porins/metabolism*
7.Efficacy of electroacupuncture on acute intracerebral hemorrhage and its effect on serum AQP4 in patients.
Si-Ming NI ; He-Qun LV ; Shu-Ying XU ; Yong-Jun PENG
Chinese Acupuncture & Moxibustion 2023;43(10):1099-1103
OBJECTIVE:
To observe the effects on neural function, living ability and mental state of the patients with acute intracerebral hemorrhage (ICH), as well as aquaporin 4 (AQP4) in the serum after treated with electroacupuncture (EA) on the base of routine therapy of western medicine.
METHODS:
Seventy-two acute ICH patients were randomized into an observation group (36 cases, 4 cases dropped off) and a control group (36 cases, 2 cases dropped off). In the control group, the conventional treatment was delivered such as stopping bleeding, preventing re-hemorrhage, controlling blood pressure, mitigating neural edema and reducing intracranial pressure. In the observation group, on the base of the treatment in the control group, EA was supplemented. Acupoints included Shuigou (GV 26), bilateral Neiguan (PC 6) and Sanyinjiao (SP 6) etc. Electric stimulation was operated at Neiguan (PC 6) and Sanyinjiao (SP 6) on the same side, with disperse-dense wave, and 2 Hz/100 Hz in frequency, tolerable current intensity. Electric stimulation was delivered for 30 min in each treatment, once daily and for 6 times per week. The duration of treatment was 2 weeks in the two groups. Before and after treatment, changes of the scores of National Institutes of Health stroke scale (NIHSS), modified Barthel index (MBI) and mini-mental state examination (MMSE), as well as AQP4 content in the serum were observed in the two groups; the efficacy and safety were compared between the two groups.
RESULTS:
The NIHSS scores and the serum AQP4 content decreased after treatment when compared with those before treatment in the two groups (P<0.05), while, MBI and MMSE scores increased (P<0.05). In the observation group, NIHSS score and serum AQP4 content were lower than those of the control group (P<0.05), and MBI and MMSE scores were higher (P<0.05). The total effective rate of the observation group was 93.8% (30/32), higher than that of the control group (73.5%, 25/34, P<0.05). The treatment in the two groups was safe, without adverse reactions and events occurring in the patients.
CONCLUSION
Electroacupuncture, on the base of conventional treatment of western medicine, can effectively improve the neural function, living ability, mental state and serum AQP4 content of the patients with acute ICH. It is suggested that the effective treatment by electroacupuncture may be related to the regulation of the serum AQP4 content.
Humans
;
Electroacupuncture
;
Aquaporin 4
;
Acupuncture Therapy
;
Cerebral Hemorrhage/therapy*
;
Treatment Outcome
;
Acupuncture Points
8.Analysis of the clinical characteristics and misdiagnosis of area postrema syndrome manifesting as intractable nausea, vomiting, and hiccups in neuromyelitis optica spectrum disorders.
Shi Min ZHANG ; Feng QIU ; Xuan SUN ; Hui SUN ; Lei WU ; De Hui HUANG ; Wei Ping WU
Chinese Journal of Internal Medicine 2023;62(6):705-710
Objective: To investigate the misdiagnosis of area postrema syndrome (APS) manifesting as intractable nausea, vomiting and hiccups in neuromyelitis optic spectrum disease (NMOSD) and reduce the risk of misdiagnosis. Methods: We retrospectively analyzed data from NMOSD patients attending the Department of Neurology at the First Medical Center of PLA General Hospital between January 2019 and July 2021. SPSS25.0 was then used to analyze the manifestations, misdiagnosis, and mistreatment of APS. Results: A total of 207 patients with NMOSD were included, including 21 males and 186 females. The mean age of onset was 39±15 years (range: 5-72 years). The proportion of patients who were positive for serum aquaporin 4 antibody was 82.6% (171/207). In total, 35.7% (74/207) of the NMOSD patients experienced APS during the disease course; of these patients, 70.3% (52/74) had APS as the first symptom and 29.7% (22/74) had APS as a secondary symptom. The misdiagnosis rates for these conditions were 90.4% (47/52) and 50.0% (11/22), respectively. As the first symptom, 19.2% (10/52) of patients during APS presented only with intractable nausea, vomiting and hiccups; 80.8% (42/52) of patients experienced other neurological symptoms. The Departments of Gastroenterology and General Medicine were the departments that most frequently made the first diagnosis of APS, accounting for 54.1% and 17.6% of patients, respectively. The most common misdiagnoses related to diseases of the digestive system and the median duration of misdiagnosis was 37 days. Conclusions: APS is a common symptom of NMOSD and is associated with a high rate of misdiagnosis. Other concomitant symptoms often occur with APS. Gaining an increased awareness of this disease/syndrome, obtaining a detailed patient history, and performing physical examinations are essential if we are to reduce and avoid misdiagnosis.
Male
;
Female
;
Humans
;
Child, Preschool
;
Child
;
Adolescent
;
Young Adult
;
Adult
;
Middle Aged
;
Aged
;
Neuromyelitis Optica/diagnosis*
;
Area Postrema
;
Retrospective Studies
;
Hiccup/complications*
;
Vomiting/etiology*
;
Nausea/etiology*
;
Inflammation
;
Syndrome
;
Autoantibodies
;
Diagnostic Errors
;
Aquaporin 4
9.Difference of lipid-lowering efficacy of "Xinjianqu" before and after fermentation and its mechanism based on LKB1-AMPK pathway and 16S rDNA sequencing technology.
De-Hua LI ; Rui-Sheng WANG ; Zhen-Ling ZHANG ; Jian-Guang ZHU ; Meng-Mei SUN ; Jia QIAO
China Journal of Chinese Materia Medica 2023;48(8):2146-2159
On the basis of establishing the prescription of Xinjianqu and clarifying the increase of the lipid-lowering active ingredients of Xinjianqu by fermentation, this paper further compared the differences in the lipid-lowering effects of Xinjianqu before and after fermentation, and studied the mechanism of Xinjianqu in the treatment of hyperlipidemia. Seventy SD rats were randomly divided into seven groups, including normal group, model group, positive drug simvastatin group(0.02 g·kg~(-1)), and low-dose and high-dose Xinjianqu groups before and after fermentation(1.6 g·kg~(-1) and 8 g·kg~(-1)), with ten rats in each group. Rats in each group were given high-fat diet continuously for six weeks to establish the model of hyperlipidemia(HLP). After successful modeling, the rats were given high-fat diet and gavaged by the corresponding drugs for six weeks, once a day, to compare the effects of Xinjianqu on the body mass, liver coefficient, and small intestine propulsion rate of rats with HLP before and after fermentation. The effects of Xinjianqu before and after fermentation on total cholesterol(TC), triacylglyceride(TG), high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), alanine aminotransferase(ALT), aspartate aminotransferase(AST), blood urea nitrogen(BUN), creatinine(Cr), motilin(MTL), gastrin(GAS), and the Na~+-K~+-ATPase levels were determined by enzyme-linked immunosorbent assay(ELISA). The effects of Xinjianqu on liver morphology of rats with HLP were investigated by hematoxylin-eosin(HE) staining and oil red O fat staining. The effects of Xinjianqu on the protein expression of adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK), phosphorylated AMPK(p-AMPK), liver kinase B1(LKB1), and 3-hydroxy-3-methylglutarate monoacyl coenzyme A reductase(HMGCR) in liver tissues were investigated by immunohistochemistry. The effects of Xinjianqu on the regulation of intestinal flora structure of rats with HLP were studied based on 16S rDNA high-throughput sequencing technology. The results showed that compared with those in the normal group, rats in the model group had significantly higher body mass and liver coefficient(P<0.01), significantly lower small intestine propulsion rate(P<0.01), significantly higher serum levels of TC, TG, LDL-C, ALT, AST, BUN, Cr, and AQP2(P<0.01), and significantly lower serum levels of HDL-C, MTL, GAS, Na~+-K~+-ATP levels(P<0.01). The protein expression of AMPK, p-AMPK, and LKB1 in the livers of rats in the model group was significantly decreased(P<0.01), and that of HMGCR was significantly increased(P<0.01). In addition, the observed_otus, Shannon, and Chao1 indices were significantly decreased(P<0.05 or P<0.01) in rat fecal flora in the model group. Besides, in the model group, the relative abundance of Firmicutes was reduced, while that of Verrucomicrobia and Proteobacteria was increased, and the relative abundance of beneficial genera such as Ligilactobacillus and Lachnospiraceae_NK4A136_group was reduced. Compared with the model group, all Xinjianqu groups regulated the body mass, liver coefficient, and small intestine index of rats with HLP(P<0.05 or P<0.01), reduced the serum levels of TC, TG, LDL-C, ALT, AST, BUN, Cr, and AQP2, increased the serum levels of HDL-C, MTL, GAS, and Na~+-K~+-ATP, improved the liver morphology, and increased the protein expression gray value of AMPK, p-AMPK, and LKB1 in the liver of rats with HLP and decreased that of LKB1. Xinjianqu groups could regulate the intestinal flora structure of rats with HLP, increased observed_otus, Shannon, Chao1 indices, and increased the relative abundance of Firmicutes, Ligilactobacillus(genus), Lachnospiraceae_NK4A136_group(genus). Besides, the high-dose Xinjianqu-fermented group had significant effects on body mass, liver coefficient, small intestine propulsion rate, and serum index levels of rats with HLP(P<0.01), and the effects were better than those of Xinjianqu groups before fermentation. The above results show that Xinjianqu can improve the blood lipid level, liver and kidney function, and gastrointestinal motility of rats with HLP, and the improvement effect of Xinjianqu on hyperlipidemia is significantly enhanced by fermentation. The mechanism may be related to AMPK, p-AMPK, LKB1, and HMGCR protein in the LKB1-AMPK pathway and the regulation of intestinal flora structure.
Rats
;
Animals
;
AMP-Activated Protein Kinases/metabolism*
;
Rats, Sprague-Dawley
;
Cholesterol, LDL
;
Fermentation
;
Aquaporin 2/metabolism*
;
Lipid Metabolism
;
Liver
;
Lipids
;
Hyperlipidemias/genetics*
;
Adenosine Triphosphate/pharmacology*
;
Diet, High-Fat/adverse effects*
10.Shen Qi Wan attenuates renal interstitial fibrosis through upregulating AQP1.
Yiyou LIN ; Jiale WEI ; Yehui ZHANG ; Junhao HUANG ; Sichen WANG ; Qihan LUO ; Hongxia YU ; Liting JI ; Xiaojie ZHOU ; Changyu LI
Chinese Journal of Natural Medicines (English Ed.) 2023;21(5):359-370
Renal interstitial fibrosis (RIF) is the crucial pathway in chronic kidney disease (CKD) leading to the end-stage renal failure. However, the underlying mechanism of Shen Qi Wan (SQW) on RIF is not fully understood. In the current study, we investigated the role of Aquaporin 1 (AQP1) in SQW on tubular epithelial-to-mesenchymal transition (EMT). A RIF mouse model induced by adenine and a TGF-β1-stimulated HK-2 cell model were etablished to explore the involvement of AQP 1 in the protective effect of SQW on EMT in vitro and in vivo. Subsequently, the molecular mechanism of SQW on EMT was explored in HK-2 cells with AQP1 knockdown. The results indicated that SQW alleviated kidney injury and renal collagen deposition in the kidneys of mice induced by adenine, increased the protein expression of E-cadherin and AQP1 expression, and decreased the expression of vimentin and α-smooth muscle actin (α-SMA). Similarly, treatmement with SQW-containing serum significantly halted EMT process in TGF-β1 stimulated HK-2 cells. The expression of snail and slug was significantly upregulated in HK-2 cells after knockdown of AQP1. AQP1 knockdown also increased the mRNA expression of vimentin and α-SMA, and decreased the expression of E-cadherin. The protein expression of vimentin increased, while the expression of E-cadherin and CK-18 significantly decreased after AQP1 knockdown in HK-2 cells. These results revealed that AQP1 knockdown promoted EMT. Furthermore, AQP1 knockdown abolished the protective effect of SQW-containing serum on EMT in HK-2 cells. In sum, SQW attentuates EMT process in RIF through upregulation of the expression of AQP1.
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Animals
;
Mice
;
Male
;
Cell Line
;
Rats
;
Kidney/physiology*
;
Fibrosis/drug therapy*
;
Renal Insufficiency, Chronic/drug therapy*
;
Adenine
;
Epithelial-Mesenchymal Transition
;
Aquaporin 1/metabolism*

Result Analysis
Print
Save
E-mail