1.Thirteen-and-a-half syndrome in 14 year old female
Jose Martin L. Velasco ; Karen B. Reyes
Philippine Journal of Health Research and Development 2024;28(3):39-41
BACKGROUND
Thirteen-and-a-half syndrome consists of a one-and-a half syndrome with an ipsilateral facial and trigeminal nerve palsy. This is due to lesions that affects the ipsilateral paramedian pontine reticular formation (PPRF) or the ipsilateral abducens nerve nucleus (VI), the contralateral medial longitudinal fasciculus (MLF), the facial nerve (VII), and the trigeminal nerve (V) .
OBJECTIVESThis is a case of Thirteen-and-a-half syndrome and stress the importance of a proper neurologic exam to aid in the localization of lesions in the brain.
METHODOLOGYThis patient was monitored during her admission. She underwent a plain cranial CT scan to confirm the suspected hemorrhage and supportive management was done to relieve her symptoms.
RESULTSA 14-year-old female patient presented with a one day history of right-sided hemiparesis. There was associated binocular diplopia, dizziness, slurring of speech, dropping of the left lip, and three episodes of spontaneous projectile vomiting. Plain cranial CT scan showed a left-sided pontine hemorrhage, and she was then advised admission. There was exotropia of the right eye on primary gaze with -4 on adduction, abducting nystagmus on the right eye, horizontal gaze palsy on the left eye, no convergence, left facial weakness, and decreased left facial sensation with minimal improvement during her admission. On the 1-year follow up, there was significant improvement with full motility on the right eye and a -1 on abduction on the left eye.
CONCLUSIONThis is a case of a Thirteen-and-a-half syndrome in a young female patient. A complete neuro-ophthalmological exam is paramount as it is both sight-saving and life saving.
Pontine Tegmentum
2.Acute hypoxia blunts cold sensitivity through the inhibition of the lateral parabrachial nucleus in rats.
Ze-Jun WANG ; Tian YANG ; Qing-Yuan HUANG
Acta Physiologica Sinica 2023;75(3):351-359
To explore the changes of cold sensitivity after exposure to acute hypoxia and its mechanisms, Sprague-Dawley rats were divided into normoxia control group (21% O2, 25 °C), 10% O2 hypoxia group (10% O2, 25 °C), 7% O2 hypoxia group (7% O2, 25 °C), normoxia cold group (21% O2, 10 °C) and hypoxia cold group (7% O2, 10 °C). Cold foot withdrawal latency and preference temperature of each group were measured, skin temperatures were estimated using an infrared thermographic imaging camera, body core temperature was recorded by wireless telemetry system, immunohistochemical staining was used to detect the expression of c-Fos in the lateral parabrachial nucleus (LPB). The results showed that acute hypoxia significantly prolonged the latency of cold foot withdrawal and significantly enhanced the intensity of cold stimulation for foot withdrawal, and the rats under hypoxia preferred cold temperature. Cold exposure (10 °C) for 1 h significantly enhanced the expression of c-Fos in LPB of rats in normoxia, while hypoxia inhibited cold-induced c-Fos expression. Acute hypoxia significantly increased the skin temperature of feet and tails, decreased the skin temperature of interscapular region, and decreased the body core temperature of rats. These results indicate that acute hypoxia can significantly blunt cold sensitivity through the inhibition of LPB, suggesting actively keeping warm measures should be taken at the early stage after ascent to high altitude to prevent the upper respiratory infection and acute mountain sickness.
Rats
;
Animals
;
Rats, Sprague-Dawley
;
Parabrachial Nucleus/physiology*
;
Temperature
;
Cold Temperature
;
Hypoxia
;
Proto-Oncogene Proteins c-fos
3.Magnetic resonance imaging features of cerebellar atrophy pattern after epilepsy.
Ximei FENG ; Qian WANG ; Hong JIN ; Shuai YANG ; Wu XING
Journal of Central South University(Medical Sciences) 2023;48(5):691-697
OBJECTIVES:
Clinically, it has been found that some patients with epilepsy are accompanied by cerebellar atrophy that is inconsistent with symptoms, but the pattern of cerebellar atrophy after epilepsy and the role of cerebellar atrophy in the mechanism of epilepsy have not been elucidated. This study aims to explore the specific pattern of cerebellar atrophy after epilepsy via analyzing magnetic resonance images in patients with postepileptic cerebellar atrophy.
METHODS:
A total of 41 patients with epilepsy, who received the treatment in Xiangya Hospital of Central South University from January 2017 to January 2022 and underwent cranial MRI examination, were selected as the case group. The results of cranial MRI examination of all patients showed cerebellar atrophy. In the same period, 41 cases of physical examination were selected as the control group. General clinical data and cranial MRI results of the 2 groups were collected. The maximum area and signal of dentate nucleus, the maximum width of the brachium pontis, the maximum anterior-posterior diameter of the pontine, and the maximum transverse area of the fourth ventricle were compared between the 2 groups. The indexes with difference were further subjected to logistic regression analysis to clarify the characteristic imaging changes in patients with cerebellar atrophy after epilepsy.
RESULTS:
Compared with the control group, the maximum width of the brachium pontis and the maximum anterior-posterior diameter of the pontine were decreased significantly, the maximum transverse area of the fourth ventricle was increased significantly in the case group (all P<0.05). The difference in distribution of the low, equal, and high signal in dentate nucleus between the 2 groups was statistically significant (χ2=43.114, P<0.001), and the difference in the maximum area of dentate nucleus between the 2 groups was not significant (P>0.05). The maximum width of the brachium pontis [odds ratio (OR)=3.327, 95% CI 1.454 to 7.615, P=0.004] and the maximum transverse area of the fourth ventricle (OR=0.987, 95% CI 0.979 to 0.995, P=0.002) were independent factors that distinguished cerebellar atrophy after epilepsy from the normal control, while the anterior-posterior diameter of pontine (OR=1.456, 95% CI 0.906 to 2.339, P>0.05) was not an independent factor that distinguished them.
CONCLUSIONS
In MRI imaging, cerebellar atrophy after epilepsy is manifested as significant atrophy of the brachium pontis, significant enlargement of the fourth ventricle, and increased dentate nucleus signaling while insignificant dentate nucleus atrophy. This particular pattern may be associated with seizures and exacerbated pathological processes.
Humans
;
Magnetic Resonance Imaging
;
Pons
;
Epilepsy/diagnostic imaging*
;
Atrophy/pathology*
;
Cerebellum/pathology*
4.Control of Emotion and Wakefulness by Neurotensinergic Neurons in the Parabrachial Nucleus.
Jingwen CHEN ; Noam GANNOT ; Xingyu LI ; Rongrong ZHU ; Chao ZHANG ; Peng LI
Neuroscience Bulletin 2023;39(4):589-601
The parabrachial nucleus (PBN) integrates interoceptive and exteroceptive information to control various behavioral and physiological processes including breathing, emotion, and sleep/wake regulation through the neural circuits that connect to the forebrain and the brainstem. However, the precise identity and function of distinct PBN subpopulations are still largely unknown. Here, we leveraged molecular characterization, retrograde tracing, optogenetics, chemogenetics, and electrocortical recording approaches to identify a small subpopulation of neurotensin-expressing neurons in the PBN that largely project to the emotional control regions in the forebrain, rather than the medulla. Their activation induces freezing and anxiety-like behaviors, which in turn result in tachypnea. In addition, optogenetic and chemogenetic manipulations of these neurons revealed their function in promoting wakefulness and maintaining sleep architecture. We propose that these neurons comprise a PBN subpopulation with specific gene expression, connectivity, and function, which play essential roles in behavioral and physiological regulation.
Parabrachial Nucleus/physiology*
;
Wakefulness/physiology*
;
Neurons/physiology*
;
Emotions
;
Sleep
5.Dynamic changes of locus coeruleus damage in Parkinson's disease-like mice induced by paraquat.
Bing Yang ZHANG ; Kai Dong WANG ; Bao Fu ZHANG ; Tian TIAN ; Yi Fan WANG ; Min HUANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(4):260-266
Objective: To observe the dynamic changes of brainstem locus coeruleus (LC) damage in Parkinson' s disease (PD) -like mice by paraquat (PQ) . Methods: In October 2019, 36 male C57BL/6 mice were randomly divided into the exposure group and the control group, with 18 mice in each group. The mice in the exposure group were given intraperitoneal injection of 15 mg/kg PQ, and the mice in the control group were given intraperitoneal injection of 0.9% saline, twice a week for 8 weeks. Neurobehavioral changes (pole climbing test, swimming test, open field test, tail hanging test, high plus maze test and water maze test) were observed at 4 weeks, 6 weeks and 8 weeks, respectively, and the changes of motor ability, emotion and cognitive function were evaluated. The brain tissue of mice were taken and stained with Hematoxylin-Eosin (HE) to observe the pathological changes of LC. Nissl staining was used to detect the changes of neuronal Nissl bodies in LC. Immunohistochemistry (IHC) staining was used to detect the expression of neuron nuclear antigen (NeuN) , dopamine (DA) neurons and norepinephrine (NE) neuron markers tyrosine hydroxylase (TH) , α-synuclein (α-syn) in substantia nigra (SN) and LC. The expression levels of NeuN, TH and α-syn in the midbrain and brainstem were detected by Western blotting. TUNEL staining was used to detect neuronal apoptosis in LC. Results: Compared with the 4th week of PQ exposure group, the time of pole climbing and swimming immobility were gradually increased, the ratio of open arm residence time of high plus maze test and the number of times of the platform and the residence time of platform quadrant in water maze test were gradually decreased (P<0.05) in the exposure group with the progress of exposure time. The results of HE and Nissl staining showed that the neurons in LC gradually arranged loosely, the nucleus were deeply stained, the cytoplasm was pyknosis, and the number of Nissl bodies gradually decreased (P<0.05) in the exposure group with the progress of exposure time. IHC results showed that the number of NeuN and TH positive cells in SN and LC of mice were gradually decreased, and the positive expression of α-syn was gradually increased (P<0.05) in the exposure group with the progress of exposure time. Western blotting results showed that the expression levels of NeuN and TH in the midbrain and brainstem were gradually decreased, and the expression level of α-syn was gradually increased (P<0.05) in the exposure group with the progress of exposure time. TUNEL staining showed that the apoptosis rates of neurons in LC were gradually increased (P<0.05) in the exposure group with the progress of exposure time. Conclusion: PQ induces progressive damage in the LC area of PD-like mice, which may be caused by the abnormal accumulation of pathological α-syn in the LC area.
Animals
;
Dopaminergic Neurons
;
Locus Coeruleus/pathology*
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Paraquat/toxicity*
;
Parkinson Disease/metabolism*
;
Substantia Nigra
;
Tyrosine 3-Monooxygenase/metabolism*
7.Is dorsal vagal complex the key nucleus of acupuncture regulation of gastric function?.
Chinese Acupuncture & Moxibustion 2020;40(1):89-95
Acupuncture has remarkable effects on treating functional gastrointestinal diseases, but its central mechanism is not clear. At present, the research has mainly focused on several central nuclei, such as the dorsal vagus complex (DVC), nucleus raphe magnus (NRM), locus coeruleus (LC), subnucleus reticularis dorsalis (SRD), hypothalamic paraventricular nucleus (PVN), cerebellar fastigial nucleus (FN), central amygdala (CeA), etc. It is not clear whether the nuclei are involved in acupuncture regulation of gastric function through certain interrelation. A further summary of related literature indicates that many brain regions or nuclei in the central nervous system are closely related to gastric function, such as DVC, NRM, parabrachial nuclei (PBN), LC, periaqueductal gray (PAG), cerebellum, PVN, arcuate nucleus (Arc), hippocampus, CeA, etc. Most of these nuclei have certain fiber connections with each other, in which DVC is the basic center, and other nuclei are directly or indirectly involved in the regulation of gastric function through DVC. Is DVC the key target in acupuncture regulation of gastric function? Does other nuclei have direct or indirect neural circuit with DVC to participate in the regulation of gastric function by acupuncture, such as the possibility of CeA-DVC neural loop in acupuncture regulating gastric function. Therefore, more advanced techniques such as photogenetics, chemical genetics should be introduced and the central mechanism of acupuncture on regulating gastric function with DVC as center, from the view of nerve loop, will become the focus of further research, which could explain the central integration mechanism of acupoint compatibility by modern neuroscience technology.
Acupuncture Therapy
;
Locus Coeruleus
;
Paraventricular Hypothalamic Nucleus
;
Vagus Nerve
8.A Case of Anti-N-Methyl-D-Aspartate Receptor Encephalitis Associated with Glioma of the Pons.
Francesca BERETTA ; Angelo ALIPRANDI ; Claudio DI LEO ; Andrea SALMAGGI
Journal of Clinical Neurology 2019;15(1):125-127
No abstract available.
Anti-N-Methyl-D-Aspartate Receptor Encephalitis*
;
Glioma*
;
Pons*
9.Clinical Factors Associated with Videofluoroscopic Swallowing Study Findings in Stroke Patients.
Jong Min LEE ; Junsik KIM ; Seock Hee HAN ; Jin Ho PARK ; Jung Hwan KIM
Journal of the Korean Dysphagia Society 2019;9(1):16-25
OBJECTIVE: To examine the clinical factors and brain lesion locations related to the patterns of dysphagia in stroke patients in a rehabilitation hospital. METHODS: The medical records of 116 stroke patients who underwent a videofluoroscopic swallowing study (VFSS) between January 2010 and January 2015 in a rehabilitation hospital were reviewed retrospectively. The swallowing-related parameters were assessed using a VFSS. The brain lesion locations were classified as the cortex, basal ganglia, thalamus, midbrain, pons, medulla, cerebellum, and others (subarachnoid or intraventricular hemorrhage). The ambulation ability was assessed using functional ambulation categories (FACs). The independence in the activities of daily living and the degree of cognitive impairment were assessed using the Korean versions of the modified Barthel index (K-MBI) and Mini-Mental State Examination (K-MMSE), respectively. After adjusting for the potential confounding factors in multivariate analysis, the odds ratios and confidence intervals of the stroke brain lesions were calculated and the clinical factors for predicting the VFSS findings were determined. RESULTS: Among the 116 patients, 35 (27%) had an impaired oral stage and 58 (50%) had aspiration. The impaired oral stage was associated significantly with the onset time, basal ganglia stroke, dietary and fluid intake methods at the time of the VFSS, symptoms of dysphagia, FACs, K-MBI, and K-MMSE. Aspiration was correlated with a pontine stroke, methods of dietary and fluid intakes at the time of the VFSS, symptoms of dysphagia, FACs, and K-MBI. Multivariate analysis showed that the pontine stroke and methods of dietary and fluid intake at the time of VFSS predicted aspiration after adjusting for the potential confounding factors. In subgroup analysis of the diet type, the liquid and semisolid aspirations were correlated with the dietary and fluid intake methods and pontine stroke, respectively. CONCLUSION: Patients with a pons lesion stroke, who are on a modified diet (fluid thickening and tube feeding), have higher risks of aspiration. This provides evidence for precise clinical reasoning in this specific patient group.
Activities of Daily Living
;
Aspirations (Psychology)
;
Basal Ganglia
;
Brain
;
Cerebellum
;
Cognition Disorders
;
Deglutition Disorders
;
Deglutition*
;
Diet
;
Humans
;
Medical Records
;
Mesencephalon
;
Multivariate Analysis
;
Odds Ratio
;
Oral Stage
;
Pons
;
Rehabilitation
;
Retrospective Studies
;
Stroke*
;
Thalamus
;
Walking
10.Selective Unidirectional Saccadic Palsy Due to Cavernous Angioma in the Pontine Tegmentum
Jae Myung KIM ; Hak Loh LEE ; Jae Hwan IM ; Seong Hyun MIN ; Tai Seung NAM ; Seung Han LEE
Journal of Clinical Neurology 2019;15(2):268-270
No abstract available.
Hemangioma, Cavernous
;
Paralysis
;
Pontine Tegmentum


Result Analysis
Print
Save
E-mail