1.Penetrating needling of three eye acupoints combined with sodium hyaluronate eye drops for dry eye: a randomized controlled trial.
Chinese Acupuncture & Moxibustion 2025;45(5):633-637
OBJECTIVE:
To compare the clinical efficacy between penetrating needling of three eye acupoints combined with sodium hyaluronate eye drops and sodium hyaluronate eye drops alone for the treatment of dry eye.
METHODS:
A total of 156 patients (312 eyes) with dry eye were randomly assigned to an observation group and a control group, with 78 patients (156 eyes) in each group. The control group was treated with sodium hyaluronate eye drops, one drop per eye, four times daily, for 4 weeks. In addition to the sodium hyaluronate treatment, the observation group received penetrating needling of three eye acupoints. Acupoints included bilateral Cuanzhu (BL2), Sizhukong (TE23), Sibai (ST2), and Jingming (BL1). Needling was performed once daily, four times a week, for 4 weeks. The subjective ocular symptom scores, neuropathic pain symptom inventory-eye (NPSI-Eye) scores, ocular surface disease index (OSDI) scores, corneal fluorescein staining (FL) scores, tear break-up time (BUT), SchirmerⅠtest (SⅠT), central tear meniscus height (TMH), and tear levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were evaluated before and after treatment in the two groups. Clinical efficacy was also compared between the two groups.
RESULTS:
After treatment, both groups showed significant improvements in subjective ocular symptom scores, NPSI-Eye scores, OSDI scores, FL scores, and reductions in tear IL-6 and TNF-α levels (P<0.01). Additionally, BUT, SⅠT, and TMH were increased significantly in both groups (P<0.01). After treatment, the subjective ocular symptom scores, NPSI-Eye score, OSDI score, FL score, and tear levels of IL-6 and TNF-α in the observation group were lower than those in the control group (P<0.01, P<0.05), while BUT, SⅠT, and TMH were significantly improved compared to the control group (P<0.01). The markedly effective rate and total effective rate in the observation group were 83.3% (65/78) and 100.0% (78/78), respectively, which were higher than 52.6% (41/78, P<0.01) and 92.3% (72/78, P<0.05) in the control group.
CONCLUSION
The penetrating needling of three eye acupoints combined with sodium hyaluronate eye drops can effectively alleviate symptoms of dry eye, reduce inflammatory response, and has superior efficacy to sodium hyaluronate eye drops alone.
Humans
;
Hyaluronic Acid/administration & dosage*
;
Male
;
Female
;
Dry Eye Syndromes/genetics*
;
Middle Aged
;
Acupuncture Points
;
Ophthalmic Solutions/administration & dosage*
;
Adult
;
Aged
;
Treatment Outcome
;
Acupuncture Therapy
;
Interleukin-6/genetics*
;
Young Adult
;
Tumor Necrosis Factor-alpha/metabolism*
2.Multi-organ inflammatory phenotypes and transcriptomic characterization in an inflammation-driven mouse model of preeclampsia induced by LPS.
Ning WANG ; Jing-Qiu FENG ; Ying XIE ; Meng-Can SUN ; Qi WANG ; Zhe WANG ; Lu GAO
Acta Physiologica Sinica 2025;77(5):775-791
Preeclampsia (PE) is a severe gestational disorder characterized by hypertension and proteinuria, with a subset of cases exhibiting an immune-driven phenotype marked by placental overexpression of proinflammatory cytokines and chronic inflammatory damage, profoundly impacting fetal development. To elucidate the pathophysiology of this PE subtype, we established an inflammation-driven PE mouse model via lipopolysaccharide (LPS) intraperitoneal injection, systematically evaluating histopathological changes in maternal heart, liver, lung, kidney, and placenta, and integrating transcriptomic profiling to uncover molecular mechanisms. LPS administration robustly induced maternal hypertension and proteinuria, hallmarks of PE, without significantly altering organ or fetal weights. Histological analyses revealed pronounced inflammatory damage in the maternal lung, kidney, and placenta, with the lung exhibiting the most severe pathology, characterized by inflammatory cell infiltration, alveolar wall thickening, and interstitial edema-challenging the conventional focus on placental and renal primacy in PE. Placental labyrinth and junctional zones displayed extensive structural disruption and necrosis, indicating functional impairment. Transcriptomic analysis identified 27 inflammation-related genes consistently upregulated across tissues, with protein-protein interaction networks pinpointing Il1β, Il6, Ccl5, Ccl2, Cxcl10, Tlr2, and Icam1 as hub genes. Quantitative PCR validation confirmed Tlr2 as a central regulator, evidenced by significant upregulation of Tlr2 in lung, kidney, and placenta of LPS-induced PE mice, while Cxcl10 exhibited placenta-specific upregulation, suggesting a synergistic inflammatory axis in placental pathology. These findings highlight the lung as a critical, yet underappreciated, target in inflammation-driven PE, reframe the multi-organ inflammatory landscape of the disease, and nominate Tlr2 and Cxcl10 as potential diagnostic biomarkers and therapeutic targets, offering new avenues for precision intervention in PE.
Animals
;
Female
;
Pregnancy
;
Mice
;
Pre-Eclampsia/genetics*
;
Inflammation
;
Lipopolysaccharides/adverse effects*
;
Disease Models, Animal
;
Transcriptome
;
Placenta/pathology*
;
Phenotype
3.Research progress in mechanisms of traditional Chinese medicine polysaccharides in prevention and treatment of alcoholic liver disease.
Yu-Fan CHEN ; He JIANG ; Qing MA ; Qi-Han LUO ; Shuo HUANG ; Jiang QIU ; Fu-Zhe CHEN ; Zi-Yi SHAN ; Ping QIU
China Journal of Chinese Materia Medica 2025;50(2):356-362
Alcoholic liver disease(ALD), a major cause of chronic liver disease worldwide, poses a serious threat to human health. Despite the availability of various drugs for treating ALD, their efficacy is often uncertain, necessitating the search for new therapeutic approaches. Traditional Chinese medicine polysaccharides have garnered increasing attention in recent years due to their versatility, high efficiency, and low side effects, and they have demonstrated significant potential in preventing and treating ALD. Emerging studies have suggested that these polysaccharides exert their therapeutic effects through multiple mechanisms, including the inhibition of oxidative stress and the regulation of lipid metabolism, gut microbiota, and programmed cell death. This review summarizes the recent research progress in the pharmacological effects and regulatory mechanisms of traditional Chinese medicine polysaccharides in treating ALD, aiming to provide a scientific basis and theoretical support for their application in the prevention and treatment of ALD.
Humans
;
Liver Diseases, Alcoholic/metabolism*
;
Polysaccharides/administration & dosage*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Oxidative Stress/drug effects*
;
Medicine, Chinese Traditional
;
Gastrointestinal Microbiome/drug effects*
;
Lipid Metabolism/drug effects*
4.Preparation and intestinal absorption mechanism of herpetrione and Herpetospermum caudigerum polysaccharides based self-assembled nanoparticles.
Xiang DENG ; Yu-Wen ZHU ; Ji-Xing ZHENG ; Rui SONG ; Jian-Tao NING ; Ling-Yu HANG ; Zhi-Hui YANG ; Hai-Long YUAN
China Journal of Chinese Materia Medica 2025;50(2):404-412
In this experiment, self-assembled nanoparticles(SANs) were prepared by the pH-driven method, and Her-HCP SAN was constructed by using herpetrione(Her) and Herpetospermum caudigerum polysaccharides(HCPs). The average particle size and polydispersity index(PDI) were used as evaluation indexes for process optimization, and the quality of the final formulation was evaluated in terms of particle size, PDI, Zeta potential, and microstructure. The proposed Her-HCP SAN showed a spheroid structure and uniform morphology, with an average particle size of(244.58±16.84) nm, a PDI of 0.147 1±0.014 8, and a Zeta potential of(-38.52±2.11) mV. Her-HCP SAN significantly increased the saturation solubility of Her by 2.69 times, with a cumulative release of 90.18% within eight hours. The results of in vivo unidirectional intestinal perfusion reveal that Her active pharmaceutical ingredient(API) is most effectively absorbed in the jejunum, where both K_a and P_(app) are significantly higher compared to the ileum(P<0.001). However, the addition of HCP leads to a significant reduction in the P_(app) of Her in the jejunum(P<0.05). Furthermore, the formation of the Her-HCP SAN results in a notably lower P_(app) in the jejunum compared to Her API alone(P<0.001), while both K_a and P_(app) in the ileum are significantly increased(P<0.001, P<0.05). The absorption of Her-HCP SAN at different concentrations in the ileum shows no significant differences, and the pH has no significant effect on the absorption of Her-HCP SAN in the ileum. The addition of the transporter protein inhibitors(indomethacin and rifampicin) significantly increases the absorption parameters K_a and P_(app) of Her-HCP SAN in the ileum(P<0.05,P<0.01), whereas the addition of verapamil has no significant effect on the intestinal absorption parameters of Her-HCP SAN, suggesting that Her may be a substrate for multidrug resistance-associated protein 2 and breast cancer resistance proteins but not a substrate of P-glycoprotein.
Nanoparticles/metabolism*
;
Polysaccharides/pharmacokinetics*
;
Intestinal Absorption/drug effects*
;
Animals
;
Rats
;
Particle Size
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Male
;
Rats, Sprague-Dawley
;
Drug Carriers/chemistry*
;
Drug Compounding
;
Cucurbitaceae/chemistry*
5.Angelicae Dahuricae Radix polysaccharides treat ulcerative colitis in mice by regulating gut microbiota and metabolism.
Feng XU ; Lei ZHU ; Ya-Nan LI ; Cheng CHENG ; Yuan CUI ; Yi-Heng TONG ; Jing-Yi HU ; Hong SHEN
China Journal of Chinese Materia Medica 2025;50(4):896-907
This study employed 16S r RNA gene high-throughput sequencing and metabolomics to explore the mechanism of Angelicae Dahuricae Radix polysaccharides(RP) in the treatment of ulcerative colitis(UC). A mouse model of UC was induced with 2. 5% dextran sulfate sodium. The therapeutic effects of RP on UC in mice were evaluated based on changes in body weight, disease activity index( DAI), and colon length, as well as pathological changes. RT-qPCR was performed to assess the m RNA levels of interleukin(IL)-6, IL-1β, tumor necrosis factor(TNF)-α, myeloperoxidase(MPO), mucin 2(Muc2), Occludin, Claudin2, and ZO-1 in the mouse colon tissue. ELISA was employed to measure the expression of IL-1β and TNF-α in the colon tissue. The intestinal permeability of mice was evaluated by the fluorescent dye permeability assay. Immunohistochemistry was employed to detect the expression of Muc2 and occludin in the colon tissue. Changes in gut microbiota and metabolites were analyzed by 16S r RNA sequencing and ultra-high-performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry( UPLC-Q-Exactive Plus Orbitrap MS), respectively. The results indicated that low-dose RP alleviated general symptoms, reduced colonic inflammation and intestinal permeability, and promoted Muc2 secretion and tight junction protein expression in UC mice. In addition, low-dose RP increased gut microbiota diversity in UC mice and decreased the relative abundance of harmful bacteria such as Ochrobactrum and Streptococcus. Twenty-seven differential metabolites were identified in feces, and low-dose RP restored the levels of disturbed metabolites. Notably, arginine and proline metabolism were the most significantly altered amino acid metabolic pathways following lowdose RP intervention. In conclusion, RP can ameliorate general symptoms, inhibit colonic inflammation, and maintain intestinal mucosal barrier integrity in UC mice by modulating gut microbiota composition and arginine and proline metabolism.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Colitis, Ulcerative/genetics*
;
Mice
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Polysaccharides/administration & dosage*
;
Angelica/chemistry*
;
Humans
;
Colon/metabolism*
;
Disease Models, Animal
;
Mucin-2/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
6.Effects of drought stress training on polysaccharide accumulation and drought resistance of Codonopsis pilosula.
Lu-Lu WANG ; Xiao-Lin WANG ; Zhe-Yu LIU ; Li-Zhen WANG ; Jia-Tong SHI ; Jiao-Jiao JI ; Jian-Ping GAO ; Yun-E BAI
China Journal of Chinese Materia Medica 2025;50(3):672-681
In order to clarify the effects of drought stress training on the quality and drought resistance of Codonopsis pilosula, this study used PEG to simulate drought stress and employed potting with water control for the drought stress training of C. pilosula plants. The polysaccharide content, secondary metabolites, antioxidant system, and photosynthetic pigment system of C. pilosula after drought stress training were analyzed. The results showed that the content of fructans in the root of C. pilosula increased after two rounds of drought stress treatment, and it was significantly higher than that of the control group. The accumulation of fructans in the root of C. pilosula showed an upward trend during the rehydration treatment. The content of lobetyolin and tangshenoside Ⅰ increased after drought stress treatment compared with that of the control group. The rehydration treatment caused first increasing and then decreasing in the content of lobetyolin, while it had no significant effect on the tangshenoside Ⅰcontent. The content of photosynthetic pigments decreased after drought stress treatment, and it gradually increased during the first round of rehydration and the second round of rehydration. Moreover, the increase was faster in the second round of rehydration than in the first round of rehydration. The content of the peroxidation product malondialdehyde(MDA) and the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) increased after drought stress treatment compared with those of the control group, and they showed a tendency of decreasing during rehydration. Moreover, the decrease was faster in the second round of rehydration than in the first round of rehydration. When the plants of C. pilosula after drought stress training were again subjected to severe drought stress, the wilting rate decreased significantly, and the biomass increases significantly. This study showed that the drought stress training could promote the accumulation of polysaccharides and secondary metabolites in the root of C. pilosula. When encountering drought stress again, C. pilosula plants could quickly regulate the antioxidant system and delay the decomposition of chlorophyll to respond to drought stress. The findings provide a theoretical basis for the ecological cultivation of C. pilosula in arid and semi-arid areas.
Codonopsis/growth & development*
;
Droughts
;
Polysaccharides/metabolism*
;
Stress, Physiological
;
Water/metabolism*
;
Antioxidants/metabolism*
;
Photosynthesis
;
Drought Resistance
7.Anti-radiation metabolomics of Hericium erinaceus polysaccharides based on gas chromatography-mass spectrometry.
Zhuo-Yan REN ; Bing-Kun XIAO ; Xiao-Yao MIAO ; Rong-Qing HUANG
China Journal of Chinese Materia Medica 2025;50(3):758-767
A serum metabolomics analysis method based on gas chromatography-mass spectrometry(GC-MS) was used to investigate the metabolic regulation mechanism of Hericium erinaceus(H. erinaceus) polysaccharides on radiation injury. A mouse model of radiation injury was established by ~(60)Co-γ irradiation. High and low dose groups of H. erinaceus polysaccharide injection were designed, and Rubiae Radix et Rhizoma extract was set as the positive control group to investigate the therapeutic effects and metabolic reaction pathways of H. erinaceus polysaccharides on radiation injury. The metabolites of serum samples were collected by GC-MS, and principal component analysis(PCA) was conducted to establish the metabolic profiles of each group of mice. Partial least squares discriminant analysis(PLS-DA), t-test(P<0.05), and variable importance in the projection(VIP>1) were used to screen out the differential metabolite. Metabolite identification and construction of related metabolic pathways and metabolic networks were achieved by using online databases such as HMDB and METLIN. The results showed that 12 differential metabolites in the serum of mice irradiated at 6.5 Gy that were associated with the radiation injury model, including lactic acid, alanine, urea, serine, threonine, glycerol, L-5-oxoproline, L-lysine, stearic acid, stearic acid, oleic acid, and 1-monopalmitoylglucoside. Two metabolic pathways were enriched: glycerolipid metabolism and metabolism of glycine, serine, and threonine. 18 differential metabolites in the serum of mice irradiated at 8.5 Gy were associated with the radiation injury model, including lactic acid, alanine, urea, L-leucine, glycerol, nonanoic acid, serine, threonine, L-5-oxoproline, phenylalanine, L-ornithine, 1,5-dehydroorbital, L-lysine, L-tyrosine, pectic, oleic, stearic, and cholesterol. Four metabolic pathways were enriched: phenylalanine, tyrosine, and tryptophan synthesis, phenylalanine metabolism, glyceride metabolism, and glycine, serine, and threonine metabolism. It was suggested that H. erinaceus polysaccharides could intervene in radiation injury by altering amino acid and fatty acid synthesis in mice. It was assumed that H. erinaceus polysaccharides regulated the level of metabolic pathways through lipid metabolism and amino acid metabolism, thus affecting energy metabolism and amino acid metabolism and exerting its therapeutic effect on radiation damage.
Animals
;
Mice
;
Metabolomics/methods*
;
Gas Chromatography-Mass Spectrometry/methods*
;
Polysaccharides/pharmacology*
;
Male
;
Hericium/chemistry*
;
Drugs, Chinese Herbal/administration & dosage*
;
Metabolome/drug effects*
;
Gamma Rays/adverse effects*
8.Pharmacokinetics and tissue distribution of fluorescent-labeled Astragalus polysaccharides in mice.
Xiao-Huan WANG ; Peng-Xin LI ; Ting-Ting GONG ; Yun-Qian LU ; Bo YANG ; Xiang-Tao WANG
China Journal of Chinese Materia Medica 2025;50(7):1959-1968
In this study, the reductive amination method was used to label IR783 on Astragalus polysaccharides(APS) for the first time, which was verified by ultraviolet-visible spectroscopy and infrared spectroscopy. Quantitative analysis methods of APS-IR783 in plasma and various tissue were established using a multifunctional microplate reader. The pharmacokinetics and tissue distribution of APS-IR783 in mice were investigated after a single intravenous injection of 30 mg·kg~(-1) APS-IR783, and pharmacokinetic parameters were calculated using DAS 2.0 software. The results showed that the APS used had a mass fraction of 93.69%, a relative molecular weight of 1.55×10~5, and a polydispersity index(PDI, M_w/M_n) of 1.73, close to a homogeneous polysaccharide. The IR783 labeling yield reached 86.50%, and the content of IR783 in APS-IR783 was 0.72%. After a single intravenous injection of 30 mg·kg~(-1), the pharmacokinetic parameters of APS in mouse plasma were as follows: T_(max) was(0.67±0.26) h; C_(max) was(1 599.29±159.30) mg·L~(-1); T_(1/2α) and T_(1/2β) were(2.29±3.06) h and(0.44±0.05) h, respectively; AUC_(0-t) was(23 398.91±2 907.03) mg·h·L~(-1); AUC_(0-∞) was(27 710.55±3 506.55) mg·h·L~(-1); MRT_(0-∞) was(34.38±12.59) h; CL was 0.001 L·h~(-1)·kg~(-1); V_z was(0.042±0.017) L·kg~(-1). The in vivo biodistribution study demonstrated that the in vivo exposure ratios of APS in different tissue were in the following order: spleen > liver > kidney > lung > heart > small intestine > muscle > large intestine > brain > stomach, where the top five tissue accounted for 87.54% of the total area under the curve(AUC). This study successfully labeled APS with a water-soluble near-infrared fluorescent probe of IR783 for the first time and revealed the pharmacokinetics and tissue distribution of APS in mice. The paper provides detailed in vivo behavior of APS after intravenous injection, which lays the foundation for the development and utilization of APS and related natural medicines.
Animals
;
Mice
;
Polysaccharides/chemistry*
;
Tissue Distribution
;
Astragalus Plant/chemistry*
;
Male
;
Drugs, Chinese Herbal/chemistry*
;
Fluorescent Dyes/pharmacokinetics*
;
Female
9.Regulation of apoptosis and autophagy in hepatoblastoma cells by Ganoderma lucidum polysaccharides through Akt/mTOR pathway.
Yang GE ; Hang GAO ; Yun-Peng QIN ; Rui SHEN ; Hua-Zhang WU ; Ting YE ; Hang SONG
China Journal of Chinese Materia Medica 2025;50(9):2432-2441
This research investigated the impact of Ganoderma lucidum polysaccharides(GLP) on hepatoblastoma HepG2 and Huh6 cell models, as well as KM mouse model with in situ transplanted tumors, so as to provide a theoretical basis for the clinical application of GLP. Cell viability was assessed through the CCK-8 assay, whereas cell proliferation was evaluated by using the BeyoClick~(TM)EdU-488 test. Cell apoptosis was visualized via Hochest 33258 staining, and autophagy was detected through Mrfp-GFP-LC3 dual fluorescence staining. An in situ tumor transplantation model was created by using HepG2 cells in mice, and mice were treated with normal saline and GLP of 100, 200, and 300 mg·kg~(-1) for tumor count calculation and size assessment. Hematoxylin-eosin(HE) staining was used to observe pathological changes in tumor tissue and vital organs(liver, kidney, lung, spleen, and heart). Western blot analysis was conducted to measure the protein expressions of tumor protein P53(P53), B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), cleaved-caspase-3, Beclin-1, autophagy related protein-5(Atg-5), microtubule-associated protein-light chain-3Ⅰ(LC3Ⅰ)/LC3Ⅱ, autophagy adapter protein 62(P62), protein kinase B(Akt), p-Akt, mammalian target of rapamycin(mTOR), and p-mTOR. The in vitro experiment revealed that compared with the control group, after GLP treatment, tumor cell viability decreased significantly; apoptosis rate increased in a dose-dependent manner, and autophagic flux was inhibited. The in vivo experiments showed that compared with the model group, mice treated with GLP exhibited significantly fewer and smaller tumors. Western blot results showed that compared with the control group or model group, levels of P53, Bax, cleaved-caspase-3, Beclin-1, Atg-5, and LC3-Ⅱ/LC3-Ⅰ were significantly increased after GLP treatment, and the levels of Bcl-2, P62, p-Akt/Akt, and p-mTOR/mTOR were significantly decreased. These outcomes suggest that GLP promotes apoptosis and autophagy in hepatoblastoma cells by regulating the Akt/mTOR pathway.
Animals
;
Humans
;
Autophagy/drug effects*
;
Reishi/chemistry*
;
Mice
;
Apoptosis/drug effects*
;
TOR Serine-Threonine Kinases/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Liver Neoplasms/genetics*
;
Hepatoblastoma/genetics*
;
Polysaccharides/pharmacology*
;
Cell Line, Tumor
;
Signal Transduction/drug effects*
;
Male
;
Cell Proliferation/drug effects*
;
Hep G2 Cells
10.Polysaccharide extract PCP1 from Polygonatum cyrtonema ameliorates cerebral ischemia-reperfusion injury in rats by inhibiting TLR4/NLRP3 pathway.
Xin ZHAN ; Zi-Xu LI ; Zhu YANG ; Jie YU ; Wen CAO ; Zhen-Dong WU ; Jiang-Ping WU ; Qiu-Yue LYU ; Hui CHE ; Guo-Dong WANG ; Jun HAN
China Journal of Chinese Materia Medica 2025;50(9):2450-2460
This study aims to investigate the protective effects and mechanisms of polysaccharide extract PCP1 from Polygonatum cyrtonema in ameliorating cerebral ischemia-reperfusion(I/R) injury in rats through modulation of the Toll-like receptor 4(TLR4)/NOD-like receptor protein 3(NLRP3) signaling pathway. In vivo, SD rats were randomly divided into the sham group, model group, PCP1 group, nimodipine(NMDP) group, and TLR4 signaling inhibitor(TAK-242) group. A middle cerebral artery occlusion/reperfusion(MCAO/R) model was established, and neurological deficit scores and infarct size were evaluated 24 hours after reperfusion. Hematoxylin-eosin(HE) and Nissl staining were used to observe pathological changes in ischemic brain tissue. Transmission electron microscopy(TEM) assessed ultrastructural damage in cortical neurons. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-18(IL-18), tumor necrosis factor-α(TNF-α), interleukin-10(IL-10), and nitric oxide(NO) in serum. Immunofluorescence was used to analyze the expression of TLR4 and NLRP3 proteins. In vitro, a BV2 microglial cell oxygen-glucose deprivation/reperfusion(OGD/R) model was established, and cells were divided into the control, OGD/R, PCP1, TAK-242, and PCP1 + TLR4 activator lipopolysaccharide(LPS) groups. The CCK-8 assay evaluated BV2 cell viability, and ELISA determined NO release. Western blot was used to analyze the expression of TLR4, NLRP3, and downstream pathway-related proteins. The results indicated that, compared with the model group, PCP1 significantly reduced neurological deficit scores, infarct size, ischemic tissue pathology, cortical cell damage, and the levels of inflammatory factors IL-1β, IL-6, IL-18, TNF-α, and NO(P<0.01). It also elevated IL-10 levels(P<0.01) and decreased the expression of TLR4 and NLRP3 proteins(P<0.05, P<0.01). Moreover, in vitro results showed that, compared with the OGD/R group, PCP1 significantly improved BV2 cell viability(P<0.05, P<0.01), reduced cell NO levels induced by OGD/R(P<0.01), and inhibited the expression of TLR4-related inflammatory pathway proteins, including TLR4, myeloid differentiation factor 88(MyD88), tumor necrosis factor receptor-associated factor 6(TRAF6), phosphorylated nuclear factor-kappaB dimer RelA(p-p65)/nuclear factor-kappaB dimer RelA(p65), NLRP3, cleaved-caspase-1, apoptosis-associated speck-like protein(ASC), GSDMD-N, IL-1β, and IL-18(P<0.05, P<0.01). The protective effects of PCP1 were reversed by LPS stimulation. In conclusion, PCP1 ameliorates cerebral I/R injury by modulating the TLR4/NLRP3 signaling pathway, exerting anti-inflammatory and anti-pyroptotic effects.
Animals
;
Toll-Like Receptor 4/genetics*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Rats, Sprague-Dawley
;
Rats
;
Reperfusion Injury/genetics*
;
Male
;
Signal Transduction/drug effects*
;
Polysaccharides/isolation & purification*
;
Polygonatum/chemistry*
;
Brain Ischemia/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Humans

Result Analysis
Print
Save
E-mail