1.Polysaccharides from Chinese herbal medicine: a review on the hepatoprotective and molecular mechanism.
Jifeng LI ; Haolin GUO ; Ying DONG ; Shuo YUAN ; Xiaotong WEI ; Yuxin ZHANG ; Lu DONG ; Fei WANG ; Ting BAI ; Yong YANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):4-14
Polysaccharides, predominantly extracted from traditional Chinese medicinal herbs such as Lycium barbarum, Angelica sinensis, Astragalus membranaceus, Dendrobium officinale, Ganoderma lucidum, and Poria cocos, represent principal bioactive constituents extensively utilized in Chinese medicine. These compounds have demonstrated significant anti-inflammatory capabilities, especially anti-liver injury activities, while exhibiting minimal adverse effects. This review summarized recent studies to elucidate the hepatoprotective efficacy and underlying molecular mechanisms of these herbal polysaccharides. It underscored the role of these polysaccharides in regulating hepatic function, enhancing immunological responses, and improving antioxidant capacities, thus contributing to the attenuation of hepatocyte apoptosis and liver protection. Analyses of molecular pathways in these studies revealed the intricate and indispensable functions of traditional Chinese herbal polysaccharides in liver injury management. Therefore, this review provides a thorough examination of the hepatoprotective attributes and molecular mechanisms of these medicinal polysaccharides, thereby offering valuable insights for the advancement of polysaccharide-based therapeutic research and their potential clinical applications in liver disease treatment.
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Liver Diseases/drug therapy*
;
Antioxidants
;
Polysaccharides/therapeutic use*
;
Medicine, Chinese Traditional
2.A Nested Case-Control Study to Explore the Association between Immunoglobulin G N-glycans and Ischemic Stroke.
Bi Yan WANG ; Man Shu SONG ; Jie ZHANG ; Xiao Ni MENG ; Wei Jia XING ; You Xin WANG
Biomedical and Environmental Sciences 2023;36(5):389-396
OBJECTIVE:
This study prospectively investigates the association between immunoglobulin G (IgG) N-glycan traits and ischemic stroke (IS) risk.
METHODS:
A nested case-control study was conducted in the China suboptimal health cohort study, which recruited 4,313 individuals in 2013-2014. Cases were identified as patients diagnosed with IS, and controls were 1:1 matched by age and sex with cases. IgG N-glycans in baseline plasma samples were analyzed.
RESULTS:
A total of 99 IS cases and 99 controls were included, and 24 directly measured glycan peaks (GPs) were separated from IgG N-glycans. In directly measured GPs, GP4, GP9, GP21, GP22, GP23, and GP24 were associated with the risk of IS in men after adjusting for age, waist and hip circumference, obesity, diabetes, hypertension, and dyslipidemia. Derived glycan traits representing decreased galactosylation and sialylation were associated with IS in men (FBG2S2/(FBG2 + FBG2S1 + FBG2S2): odds ratio ( OR) = 0.92, 95% confidence interval ( CI): 0.87-0.97; G1 n: OR = 0.74, 95% CI: 0.63-0.87; G0 n: OR = 1.12, 95% CI: 1.03-1.22). However, these associations were not found among women.
CONCLUSION
This study validated that altered IgG N-glycan traits were associated with incident IS in men, suggesting that sex discrepancies might exist in these associations.
Male
;
Humans
;
Female
;
Immunoglobulin G/metabolism*
;
Ischemic Stroke
;
Case-Control Studies
;
Cohort Studies
;
Glycosylation
;
Polysaccharides
3.Structure-activity relationship of Lycium barbarum polysaccharides.
Xiao-Fei LIANG ; Fang ZHANG ; Yin-Xiu JIANG ; Meng-Qiu LIU ; Sheng GUO ; Da-Wei QIAN ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2023;48(9):2387-2395
As a traditional Chinese herb and functional food, the fruits of Lycium barbarum has been widely used for thousands of years in China. L. barbarum polysaccharides(LBPs) are predominant active components, which have immunomodulatory, antioxidant, hypoglycemic, neuroprotective, anti-tumor, and prebiotic activities. The molecular weight, monosaccharide composition, glycosidic bond, branching degree, protein content, chemical modification, and spatial structure of LBPs are closely related to their biological activity. Based on the previous studies of this research team, this paper systematically combed and integrated the research progress of structure, function, and structure-activity relationship of LBPs. At the same time, some problems restricting the clarification of the structure-activity relationship of LBPs were considered and prospected, hoping to provide references for the high value utilization of LBPs and in-depth exploration of their health value.
Lycium/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Structure-Activity Relationship
;
Antioxidants/pharmacology*
;
Antineoplastic Agents
;
Polysaccharides/chemistry*
4.Relationship between immune regulation and structure of polysaccharides.
Nuo CHEN ; Wen-Jie XI ; Mei-Fen HU ; Xing-Ye WEI ; Ping XIAO ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2023;48(10):2667-2678
Polysaccharides have significant immunomodulatory activity and have good development value in food and medicine fields. At present, there are many studies on the chemical structure and immune activity of polysaccharides, but the relationship between them of polysaccharides has not been fully explained, which limits the further development and utilization of polysaccharide resources. The immune activity of polysaccharides is closely related to their own structure. This paper systematically summarized the relationship between the relative molecular weight, monosaccharide composition, glycosidic bond types, chemical modification, and advanced conformation of polysaccharides and the immune regulation, aiming to provide references for the profound study of polysaccharide structure-activity relationship and utilization of polysaccharides.
Monosaccharides/chemistry*
;
Structure-Activity Relationship
;
Molecular Weight
;
Antioxidants/pharmacology*
;
Polysaccharides/chemistry*
5.Physicochemical properties and anti-inflammatory and immunomodulatory effects of Shengfupian polysaccharides.
Qi HU ; Yu LIU ; Li HAN ; Yu-Sen HOU ; Chen-Juan ZENG ; Fu-Neng GENG ; Ming YANG ; Ya-Nan HE ; Ding-Kun ZHANG
China Journal of Chinese Materia Medica 2023;48(10):2757-2766
In this study, the crude polysaccharides was extracted from Shengfupian and purified by Sevag deproteinization. Then, the purified neutral polysaccharide fragment was obtained by the DEAE-52 cellulose chromatography column and Sephadex G-100 co-lumn. The structure of polysaccharides was characterized by ultraviolet spectroscopy, infrared spectroscopy, ion chromatography, and gel permeation chromatography. To investigate the anti-inflammatory activity of Shengfupian polysaccharides, LPS was used to induce inflammation in RAW264.7 cells. The expression of the CD86 antibody on surface of M1 cells, the function of macrophages, and the content of NO and IL-6 in the supernatant were examined. An immunodepression model of H22 tumor-bearing mice was established, and the immunomodulatory activity of Shengfupian polysaccharides was evaluated based on the tumor inhibition rate, immune organ index and function, and serum cytokine levels. Research indicated that Shengfupian polysaccharides(80 251 Da) was composed of arabinose, galactose, glucose, and fructose with molar ratio of 0.004∶0.018∶0.913∶0.065. It was smooth and lumpy under the scanning electron microscope. In the concentration range of 25-200 μg·mL~(-1), Shengfupian polysaccharides exhibited little or no toxicity to RAW264.7 cells and could inhibit the polarization of cells to the M1 type and reduce the content of NO and IL-6 in the cell supernatant. It could suppress the phagocytosis of cells at the concentration of 25 μg·mL~(-1), while enhancing the phagocytosis of RAW264.7 cells within the concentration range of 100-200 μg·mL~(-1). The 200 mg·kg~(-1) Shengfupian polysaccharides could alleviate the spleen injury caused by cyclophosphamide, increase the levels of IL-1β and IL-6, and decrease the level of TNF-α in the serum of mice. In conclusion, Shengfupian polysaccharides has anti-inflammatory effect and weak immunomodulatory effect, which may the material basis of Aconm Lateralis Radix Praeparaia for dispelling cold and relieving pain.
Animals
;
Mice
;
Interleukin-6/genetics*
;
Cytokines/metabolism*
;
Polysaccharides/chemistry*
;
RAW 264.7 Cells
;
Anti-Inflammatory Agents/chemistry*
;
Spectrophotometry, Infrared
6.Bletilla striata polysaccharide improves toxic and side effects induced by 5-FU: an untargeted metabolomics study.
Jiang-Tao ZHANG ; Peng LIU ; Wen-Long WANG ; Xin-Xu XIE ; Tao-Hong HE ; Ya-Ru CUI ; Jun YU
China Journal of Chinese Materia Medica 2023;48(13):3612-3622
This study aimed to analyze the effect of Bletilla striata polysaccharide(BSP) on endogenous metabolites in serum of tumor-bearing mice treated with 5-fluorouracil(5-FU) by untargeted metabolomics techniques and explore the mechanism of BSP in alleviating the toxic and side effects induced by 5-FU. Male BALB/C mice were randomly divided into a normal group, a model group, a 5-FU group, and a 5-FU + BSP group, with eight mice in each group. Mouse colon cancer cells(CT26) were transplanted into the mice except for those in the normal group to construct the tumor-bearing mouse model by subcutaneous injection, and 5-FU chemotherapy and BSP treatment were carried out from the second day of modeling. The changes in body weight, diarrhea, and white blood cell count in the peripheral blood were recorded. The mice were sacrificed and sampled when the tumor weight of mice in the model group reached approximately 1 g. TUNEL staining was used to detect the cell apoptosis in the small intestine of each group. The proportions of hematopoietic stem cells and myeloid progenitor cells in bone marrow were measured by flow cytometry. Five serum samples were selected randomly from each group for untargeted metabolomics analysis. The results showed that BSP was not effective in inhibiting colon cancer in mice, but diarrhea, leukopenia, and weight loss caused by 5-FU chemotherapy were significantly improved after BSP intervention. In addition, apoptotic cells decreased in the small intestinal tissues and the percentages of hematopoietic stem cells and myeloid progenitor cells in bone marrow were significantly higher after BSP treatment. Metabolomics results showed that the toxic and side effects of 5-FU resulted in significant decrease in 29 metabolites and significant increase in 22 metabolites in mouse serum. Among them, 19 disordered metabolites showed a return to normal levels in the 5-FU+BSP group. The results of pathway enrichment indicated that metabolic pathways mainly involved pyrimidine metabolism, arachidonic acid metabolism, and steroid hormone biosynthesis. Therefore, BSP may ameliorate the toxic and side effects of 5-FU in the intestinal tract and bone marrow presumably by regulating nucleotide synthesis, inflammatory damage, and hormone production.
Animals
;
Male
;
Mice
;
Colonic Neoplasms/drug therapy*
;
Diarrhea
;
Fluorouracil/adverse effects*
;
Hormones
;
Metabolomics
;
Mice, Inbred BALB C
;
Polysaccharides/pharmacology*
7.Polysaccharide isolated from wax apple suppresses ethyl carbamate-induced oxidative damage in human hepatocytes.
Tao BAO ; Naymul KARIM ; Huihui KE ; Jitbanjong TANGPONG ; Wei CHEN
Journal of Zhejiang University. Science. B 2023;24(7):574-586
Wax apple (Syzygium samarangense) has received growing research interest for its high nutritional and medicinal value due to its constituents such as polysaccharide, organic acids, flavonoids, minerals, and other substances. In this study, wax apple polysaccharide (WAP) was isolated from this plant and its protective effect against ethyl carbamate (EC)-induced oxidative damage was evaluated in human hepatocytes (L02 cells). Firstly, a series of analyses such as high-performance liquid chromatography (HPLC), high-performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), gas chromatography/mass spectrometry (GC/MS), and 1H and 13C nuclear magnetic resonance (NMR) were conducted to identify the structure of WAP. Thereafter, in vitro cell experiments were performed to verify the protective effects of WAP against EC-induced cytotoxicity, genotoxicity, and oxidative damage in L02 cells. Our results revealed that WAP is composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, arabinose, and fucose in a molar ratio of 2.20:3.94:4.45:8.56:8.86:30.82:39.78:1.48. Using a combination of methylation and NMR spectroscopic analysis, the primary structure of WAP was identified as Araf-(1→, Glcp-(1→, →2)-Araf-(1→, →3)-Galp-(1→, →3)-Araf-(1→, and →6)-Galp-(1→. Cell experiments indicated that WAP exhibited significant protective effects on EC-treated L02 cells via suppressing cytotoxicity and genotoxicity, reducing reactive oxygen species (ROS) and O2•- formation, as well as improving mitochondrial membrane potential (MMP) and glutathione (GSH). In a nutshell, WAP has the potential as an important therapeutic agent or supplement for hepatic oxidative damage. Meanwhile, further studies are needed to prove the above effects in vivo at the biological and clinical levels.
Humans
;
Syzygium/chemistry*
;
Urethane/pharmacology*
;
Spectroscopy, Fourier Transform Infrared
;
Oxidative Stress
;
Glutathione/pharmacology*
;
Hepatocytes
;
Polysaccharides/pharmacology*
8.Modulating effects of Astragalus polysaccharide on immune disorders via gut microbiota and the TLR4/NF-κB pathway in rats with syndrome of dampness stagnancy due to spleen deficiency.
Wenxiao ZHAO ; Chenchen DUAN ; Yanli LIU ; Guangying LU ; Qin LYU ; Xiumei LIU ; Jun ZHENG ; Xuelian ZHAO ; Shijun WANG ; Haijun ZHAO
Journal of Zhejiang University. Science. B 2023;24(7):650-662
The syndrome of dampness stagnancy due to spleen deficiency (DSSD) is relatively common globally. Although the pathogenesis of DSSD remains unclear, evidence has suggested that the gut microbiota might play a significant role. Radix Astragali, used as both medicine and food, exerts the effects of tonifying spleen and qi. Astragalus polysaccharide (APS) comprises a macromolecule substance extracted from the dried root of Radix Astragali, which has many pharmacological functions. However, whether APS mitigates the immune disorders underlying the DSSD syndrome via regulating gut microbiota and the relevant mechanism remains unknown. Here, we used DSSD rats induced by high-fat and low-protein (HFLP) diet plus exhaustive swimming, and found that APS of moderate molecular weight increased the body weight gain and immune organ indexes, decreased the levels of interleukin-1β (IL-1β), IL-6, and endotoxin, and suppressed the Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway. Moreover, a total of 27 critical genera were significantly enriched according to the linear discriminant analysis effect size (LEfSe). APS increased the diversity of the gut microbiota and changed its composition, such as reducing the relative abundance of Pseudoflavonifractor and Paraprevotella, and increasing that of Parasutterella, Parabacteroides, Clostridium XIVb, Oscillibacter, Butyricicoccus, and Dorea. APS also elevated the contents of short-chain fatty acids (SCFAs). Furthermore, the correlation analysis indicated that 12 critical bacteria were related to the body weight gain and immune organ indexes. In general, our study demonstrated that APS ameliorated the immune disorders in DSSD rats via modulating their gut microbiota, especially for some bacteria involving immune and inflammatory response and SCFA production, as well as the TLR4/NF-κB pathway. This study provides an insight into the function of APS as a unique potential prebiotic through exerting systemic activities in treating DSSD.
Rats
;
Animals
;
NF-kappa B/metabolism*
;
Spleen
;
Gastrointestinal Microbiome
;
Toll-Like Receptor 4
;
Polysaccharides/pharmacology*
;
Astragalus Plant/metabolism*
;
Immune System Diseases/drug therapy*
;
Body Weight
9.Progress in Mechanism of Astragalus membranaceus and Its Chemical Constituents on Multiple Sclerosis.
Yong PENG ; Xiang DENG ; Shan-Shan YANG ; Wei NIE ; Yan-Dan TANG
Chinese journal of integrative medicine 2023;29(1):89-95
The primary chemical components of Astragalus membranaceus include polysaccharides, saponins, flavonoids, and amino acids. Recent studies have shown that Astragalus membranaceus has multiple functions, including improving immune function and exerting antioxidative, anti-radiation, anti-tumor, antibacterial, antiviral, and hormone-like effects. Astragalus membranaceus and its extracts are widely used in clinical practice because they have obvious therapeutic effects against various autoimmune diseases and relatively less adverse reaction. Multiple sclerosis (MS) is an autoimmune disease of central nervous system (CNS), which mainly caused by immune disorder that leads to inflammatory demyelination, inflammatory cell infiltration, and axonal degeneration in the CNS. In this review, the authors analyzed the clinical manifestations of MS and experimental autoimmune encephalomyelitis (EAE) and focused on the efficacy of Astragalus membranaceus and its chemical components in the treatment of MS/EAE.
Animals
;
Humans
;
Astragalus propinquus/chemistry*
;
Multiple Sclerosis/drug therapy*
;
Encephalomyelitis, Autoimmune, Experimental/metabolism*
;
Drugs, Chinese Herbal/chemistry*
;
Polysaccharides
10.Lyciumbarbarum polysaccharides ameliorate canine acute liver injury by reducing oxidative stress, protecting mitochondrial function, and regulating metabolic pathways.
Jianjia HUANG ; Yuman BAI ; Wenting XIE ; Rongmei WANG ; Wenyue QIU ; Shuilian ZHOU ; Zhaoxin TANG ; Jianzhao LIAO ; Rongsheng SU
Journal of Zhejiang University. Science. B 2023;24(2):157-171
The development of acute liver injury can result in liver cirrhosis, liver failure, and even liver cancer, yet there is currently no effective therapy for it. The purpose of this study was to investigate the protective effect and therapeutic mechanism of Lyciumbarbarum polysaccharides (LBPs) on acute liver injury induced by carbon tetrachloride (CCl4). To create a model of acute liver injury, experimental canines received an intraperitoneal injection of 1 mL/kg of CCl4 solution. The experimental canines in the therapy group were then fed LBPs (20 mg/kg). CCl4-induced liver structural damage, excessive fibrosis, and reduced mitochondrial density were all improved by LBPs, according to microstructure data. By suppressing Kelch-like epichlorohydrin (ECH)-associated protein 1 (Keap1), promoting the production of sequestosome 1 (SQSTM1)/p62, nuclear factor erythroid 2-related factor 2 (Nrf2), and phase II detoxification genes and proteins downstream of Nrf2, and restoring the activity of anti-oxidant enzymes like catalase (CAT), LBPs can restore and increase the antioxidant capacity of liver. To lessen mitochondrial damage, LBPs can also enhance mitochondrial respiration, raise tissue adenosine triphosphate (ATP) levels, and reactivate the respiratory chain complexes I‒V. According to serum metabolomics, the therapeutic impact of LBPs on acute liver damage is accomplished mostly by controlling the pathways to lipid metabolism. 9-Hydroxyoctadecadienoic acid (9-HODE), lysophosphatidylcholine (LysoPC/LPC), and phosphatidylethanolamine (PE) may be potential indicators of acute liver injury. This study confirmed that LBPs, an effective hepatoprotective drug, may cure acute liver injury by lowering oxidative stress, repairing mitochondrial damage, and regulating metabolic pathways.
Animals
;
Dogs
;
Antioxidants/metabolism*
;
Carbon Tetrachloride
;
Chemical and Drug Induced Liver Injury/drug therapy*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Liver
;
Metabolic Networks and Pathways
;
Mitochondria/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress
;
Polysaccharides/pharmacology*
;
Lycium/chemistry*

Result Analysis
Print
Save
E-mail