1.Molecular mechanism of verbascoside in promoting acetylcholine release of neurotransmitter.
Zhi-Hua ZHOU ; Hai-Yan XING ; Yan LIANG ; Jie GAO ; Yang LIU ; Ting ZHANG ; Li ZHU ; Jia-Long QIAN ; Chuan ZHOU ; Gang LI
China Journal of Chinese Materia Medica 2025;50(2):335-348
The molecular mechanism of verbascoside(OC1) in promoting acetylcholine(ACh) release in the pathogenesis of Alzheimer's disease(AD) was studied. Adrenal pheochromocytoma cells(PC12) of rats induced by β-amyloid protein(1-42)(Aβ_(1-42)) were used as AD models in vitro and were divided into control group, model group(Aβ_(1-42) 10 μmol·L~(-1)), OC1 treatment group(2 and 10 μg·mL~(-1)). The effect of OC1 on phosphorylated proteins in AD models was analyzed by whole protein phosphorylation quantitative omics, and the selectivity of OC1 for calcium channel subtypes was virtually screened in combination with computer-aided drug design. The fluorescence probe Fluo-3/AM was used to detect Ca~(2+) concentration in cells. Western blot analysis was performed to detect the effects of OC1 on the expression of phosphorylated calmodulin-dependent protein kinase Ⅱ(p-CaMKⅡ, Thr286) and synaptic vesicle-related proteins, and UPLC/Q Exactive MS was used to detect the effects of OC1 on ACh release in AD models. The effects of OC1 on acetylcholine esterase(AChE) activity in AD models were detected. The results showed that the differentially modified proteins in the model group and the OC1 treatment group were related to calcium channel activation at three levels: GO classification, KEGG pathway, and protein domain. The results of molecular docking revealed the dominant role of L-type calcium channels. Fluo-3/AM fluorescence intensity decreased under the presence of Ca~(2+) chelating agent ethylene glycol tetraacetic acid(EGTA), L-type calcium channel blocker verapamil, and N-type calcium channel blocker conotoxin, and the effect of verapamil was stronger than that of conotoxin. This confirmed that OC1 promoted extracellular Ca~(2+) influx mainly through its interaction with L-type calcium channel protein. In addition, proteomic analysis and Western blot results showed that the expression of p-CaMKⅡ and downstream vesicle-related proteins was up-regulated after OC1 treatment, indicating that OC1 acted on vesicle-related proteins by activating CaMKⅡ and participated in synaptic remodeling and transmitter release, thus affecting learning and memory. OC1 also decreased the activity of AChE and prolonged the action time of ACh in synaptic gaps.
Animals
;
Rats
;
Glucosides/administration & dosage*
;
Acetylcholine/metabolism*
;
Alzheimer Disease/genetics*
;
PC12 Cells
;
Phenols/chemistry*
;
Neurotransmitter Agents/metabolism*
;
Drugs, Chinese Herbal
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics*
;
Humans
;
Phosphorylation/drug effects*
;
Calcium/metabolism*
;
Polyphenols
2.Synergistic neuroprotective effects of main components of salvianolic acids for injection based on key pathological modules of cerebral ischemia.
Si-Yu TAN ; Ya-Xu WU ; Zi-Shu YAN ; Ai-Chun JU ; De-Kun LI ; Peng-Wei ZHUANG ; Yan-Jun ZHANG ; Hong GUO
China Journal of Chinese Materia Medica 2025;50(3):693-701
This study aims to explore the synergistic effects of the main components in salvianolic acids for Injection(SAFI) on key pathological events in cerebral ischemia, elucidating the pharmacological characteristics of SAFI in neuroprotection. Two major pathological gene modules related to endothelial injury and neuroinflammation in cerebral ischemia were mined from single-cell data. According to the topological distance calculated in network medicine, potential synergistic component combinations of SAFI were screened out. The results showed that the combination of caffeic acid and salvianolic acid B scored the highest in addressing both endothelial injury and neuroinflammation, demonstrating potential synergistic effects. The cell experiments confirmed that the combination of these two components at a ratio of 1∶1 significantly protected brain microvascular endothelial cells(bEnd.3) from oxygen-glucose deprivation/reoxygenation(OGD/R)-induced reperfusion injury and effectively suppressed lipopolysaccharide(LPS)-induced neuroinflammatory responses in microglial cells(BV-2). This study provides a new method for uncovering synergistic effects among active components in traditional Chinese medicine(TCM) and offers novel insights into the multi-component, multi-target acting mechanisms of TCM.
Brain Ischemia/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Benzofurans/pharmacology*
;
Mice
;
Drug Synergism
;
Caffeic Acids/pharmacology*
;
Polyphenols/pharmacology*
;
Humans
;
Alkenes/pharmacology*
;
Endothelial Cells/drug effects*
;
Depsides
3.Advances in the regulation of gut microbiota metabolites by traditional Chinese medicine in the treatment of diseases.
Deyi YANG ; Jinghan LIN ; Tao WANG ; Hongwei LIU
Chinese Journal of Biotechnology 2025;41(6):2236-2255
Traditional Chinese medicine (TCM) plays an important role in preventing and treating diseases and improving human health. However, the complex bioactive components and regulation of signaling pathway and network restrict the elucidation of the mechanisms of action of TCM. A human being is regarded as a super "symbiont" composed of body cells and commensal microorganisms. Gut microbiota is the core commensal microorganism system of a human body, being considered as "the second genome" and the new "organ". Alterations in gut microbiota reflect the state of body health and progression of diseases. Recent investigations have revealed that the TCM rich in polysaccharides and polyphenols can modulate gut microbiota metabolites to rehabilitate gut homeostasis, thus ameliorating diseases via regulating gut-liver axis or gut-brain axis. This review summarizes the causal relationship and mechanisms of action of TCM in the treatment of diseases from the perspective of gut microbiota metabolites. Our findings are expected to provide new insights into the mechanisms of TCM in preventing and treating diseases and guidance for TCM-based drug discovery in the future.
Humans
;
Gastrointestinal Microbiome/physiology*
;
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal/therapeutic use*
;
Polyphenols/pharmacology*
;
Polysaccharides/pharmacology*
4.Research progress in natural products for regulating intestinal microecology and treating liver diseases.
Sinan HU ; Shuwei LI ; Yaping LIU ; Hongxia LI ; Shuixiang HE ; Rongzhan FU ; Qiang FEI
Chinese Journal of Biotechnology 2025;41(8):2971-2986
Liver diseases have become a major challenge threating the global health, posing a heavy burden on both social and personal well-being. In recent years, the development of the gut-liver axis theory has provided new research perspectives and intervention strategies for the prevention and treatment of liver diseases. Natural products, recognized as biological molecules with diverse sources, rich activities, and minimal side effects, demonstrate great potential in regulating intestinal flora and improving liver health. Studies have shown that natural products such as saponins, polyphenols, polysaccharides, and alkaloids can regulate the composition and metabolites of intestinal flora, thereby intervening in liver diseases. In this paper, we systematically review the role of natural products in the regulation of the intestinal flora-gut-liver axis and summarize recent research progress in the prevention and treatment of liver diseases. Furthermore, we outline the challenges and limitations currently facing the study in this field. Finally, this paper makes an outlook on the clinical application of natural products in treating liver diseases and discusses future research directions, aiming to give new insights into the mechanisms by which natural products regulate the intestinal flora-gut-liver axis and the applications of these products in the prevention and treatment of liver diseases.
Humans
;
Gastrointestinal Microbiome/drug effects*
;
Liver Diseases/prevention & control*
;
Biological Products/pharmacology*
;
Polyphenols/pharmacology*
;
Saponins/pharmacology*
;
Intestines/microbiology*
;
Alkaloids/pharmacology*
;
Polysaccharides/pharmacology*
;
Liver
5.Hepatoprotective Effect of Camel Thorn Polyphenols in Concanavalin A-Induced Hepatitis in Mice.
Nageh Ahmed EL-MAHDY ; Thanaa Ahmed EL-MASRY ; Ahmed Mahmoud EL-TARAHONY ; Fatemah A ALHERZ ; Enass Youssef OSMAN
Chinese journal of integrative medicine 2024;30(12):1090-1100
OBJECTIVES:
To explore the prophylactic and therapeutic effects of Alhagi maurorum ethanolic extract (AME) in concanavalin A (Con A)-induced hepatitis (CIH) as well as possible underlying mechanisms.
METHODS:
Polyphenols in AME were characterized using high performance liquid chromatography (HPLC). Swiss albino mice were divided into 4 groups. Normal group received intravenous phosphate-buffered saline (PBS); Con A group received 40 mg/kg intravenous Con A. Prophylaxis group administered 300 mg/(kg·d) AME orally for 5 days before Con A intervention. Treatment group received intravenous Con A then administered 300 mg/kg AME at 30 min and 3 h after Con A intervention. After 24 h of Con A injection, hepatic injury, oxidative stress, and inflammatory mediators were assessed. Histopathological examination and markers of apoptosis, inflammation, and CD4+ cell infiltration were also investigated.
RESULTS:
HPLC analysis revealed that AME contains abundant polyphenols with pharmacological constituents, such as ellagic acid, gallic acid, ferulic acid, methylgallate, and naringenin. AME alleviated Con A-induced hepatic injury, as manifested by a significant reduction in alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase (P<0.01). Additionally, the antioxidant effect of AME was revealed by a significant reduction in oxidative stress markers (nitric oxide and malondialdehyde) and restored glutathione (P<0.01). The levels of proinflammatory cytokines (tumor necrosis factor-α, interferon-γ, and interleukin-6) and c-Jun N-terminal kinase (JNK) activity were reduced (P<0.01). Histopathological examination of liver tissue showed that AME significantly ameliorated necrotic and inflammatory lesions induced by Con A (P<0.01). Moreover, AME reduced the expression of nuclear factor kappa B, pro-apoptotic protein (Bax), caspase-3, and CD4+ T cell hepatic infiltration (P<0.01). The expression of anti-apoptotic protein Bcl-2 was increased (P<0.01).
CONCLUSION
AME has hepatoprotective and ameliorative effects in CIH mice. These beneficial effects are likely due to the anti-inflammatory, antioxidant, and anti-apoptotic effects of the clinically important polyphenolic content. AME could be a novel and promising hepatoprotective agent for managing immune-mediated hepatitis.
Animals
;
Concanavalin A
;
Mice
;
Polyphenols/pharmacology*
;
Liver/drug effects*
;
Plant Extracts/therapeutic use*
;
Camelus
;
Oxidative Stress/drug effects*
;
Male
;
Protective Agents/pharmacology*
;
Chemical and Drug Induced Liver Injury/prevention & control*
;
Apoptosis/drug effects*
;
Hepatitis/pathology*
;
Antioxidants/pharmacology*
;
CD4-Positive T-Lymphocytes/drug effects*
;
Inflammation Mediators/metabolism*
6.The role of pigmented rice in reducing cardiovascular disease risk: A mini-review of animal and human studies
Diane S. Mendoza-Sarmiento ; Alison M. Hill
Journal of Medicine University of Santo Tomas 2023;7(2):1310-1316
Higher dietary intake of polyphenols is associated with a reduced risk of cardiovascular disease (CVD) events and mortality. However, these phytochemicals are predominantly present in fruits and vegetables, which are inadequately consumed by some populations, including Filipinos. This narrative mini-review explores the potential role of polyphenol-containing pigmented rice consumption in modulating risk through a range of mechanisms identified in animal studies. Further, human studies have demonstrated promising but inconsistent effects on risk factors associated with the development of CVD, such as dyslipidemia, hyperglycemia, overweight and obesity. Therefore, this review identifies the need for more clinical trials to examine the effect of pigmented rice on CVD risk factors.
Cholesterol
;
Glucose
;
Polyphenols
7.Stem cell microencapsulation maintains stemness in inflammatory microenvironment.
Yajun ZHAO ; Yilin SHI ; Huiqi YANG ; Mengmeng LIU ; Lanbo SHEN ; Shengben ZHANG ; Yue LIU ; Jie ZHU ; Jing LAN ; Jianhua LI ; Shaohua GE
International Journal of Oral Science 2022;14(1):48-48
Maintaining the stemness of the transplanted stem cell spheroids in an inflammatory microenvironment is challenging but important in regenerative medicine. Direct delivery of stem cells to repair periodontal defects may yield suboptimal effects due to the complexity of the periodontal inflammatory environment. Herein, stem cell spheroid is encapsulated by interfacial assembly of metal-phenolic network (MPN) nanofilm to form a stem cell microsphere capsule. Specifically, periodontal ligament stem cells (PDLSCs) spheroid was coated with FeIII/tannic acid coordination network to obtain spheroid@[FeIII-TA] microcapsules. The formed biodegradable MPN biointerface acted as a cytoprotective barrier and exhibited antioxidative, antibacterial and anti-inflammatory activities, effectively remodeling the inflammatory microenvironment and maintaining the stemness of PDLSCs. The stem cell microencapsulation proposed in this study can be applied to multiple stem cells with various functional metal ion/polyphenol coordination, providing a simple yet efficient delivery strategy for stem cell stemness maintenance in an inflammatory environment toward a better therapeutic outcome.
Anti-Bacterial Agents/pharmacology*
;
Capsules/pharmacology*
;
Cell Differentiation
;
Cell Encapsulation
;
Cells, Cultured
;
Ferric Compounds/pharmacology*
;
Osteogenesis/physiology*
;
Periodontal Ligament
;
Polyphenols/pharmacology*
;
Stem Cells
;
Tannins/pharmacology*
8.The combination of EGCG with warfarin reduces deep vein thrombosis in rabbits through modulating HIF-1α and VEGF via the PI3K/AKT and ERK1/2 signaling pathways.
Yan LI ; Jing-Ping GE ; Ke MA ; Yuan-Yuan YIN ; Juan HE ; Jian-Ping GU
Chinese Journal of Natural Medicines (English Ed.) 2022;20(9):679-690
Deep venous thrombosis (DVT) poses a major challenge to public health worldwide. Endothelial cell injury evokes inflammatory and oxidative responses that contribute to thrombus formation. Tea polyphenol (TP) in the form of epigallocatechin-3-gallate (EGCG) has anti-inflammatory and oxidative effect that may ameliorate DVT. However, the precise mechanism remains incompletely understood. The current study was designed to investigate the anti-DVT mechanism of EGCG in combination with warfarin (an oral anticoagulant). Rabbits were randomly divided into five groups. A DVT model of rats was established through ligation of the inferior vena cava (IVC) and left common iliac vein, and the animals were orally administered with EGCG, warfarin, or vehicle for seven days. In vitro studies included pretreatment of human umbilical vein endothelial cells (HUVECs) with different concentrations of EGCG for 2 h before exposure to hydrogen peroxide. Thrombus weight and length were examined. Histopathological changes were observed by hematoxylin-eosin staining. Blood samples were collected for detecting coagulation function, including thrombin and prothrombin times, activated partial thromboplastin time, and fibrinogen levels. Protein expression in thrombosed IVCs and HUVECs was evaluated by Western blot, immunohistochemical analysis, and/or immunofluorescence staining. RT-qPCR was used to determine the levels of AGTR-1 and VEGF mRNA in IVCs and HUVECs. The viability of HUVECs was examined by CCK-8 assay. Flow cytometry was performed to detect cell apoptosis and ROS generation was assessed by 2',7'-dichlorofluorescein diacetate reagent. In vitro and invivo studies showed that EGCG combined with warfarin significantly reduced thrombus weight and length, and apoptosis in HUVECs. Our findings indicated that the combination of EGCG and warfarin protects HUVECs from oxidative stress and prevents apoptosis. However, HIF-1α silencing weakened these effects, which indicated that HIF-1α may participate in DVT. Furthermore, HIF-1α silencing significantly up-regulated cell apoptosis and ROS generation, and enhanced VEGF expression and the activation of the PI3K/AKT and ERK1/2 signaling pathways. In conclusion, our results indicate that EGCG combined with warfarin modifies HIF-1α and VEGF to prevent DVT in rabbits through anti-inflammation via the PI3K/AKT and ERK1/2 signaling pathways.
Animals
;
Anticoagulants/pharmacology*
;
Catechin/analogs & derivatives*
;
Eosine Yellowish-(YS)/pharmacology*
;
Fibrinogen/pharmacology*
;
Hematoxylin/pharmacology*
;
Human Umbilical Vein Endothelial Cells
;
Humans
;
Hydrogen Peroxide/pharmacology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
MAP Kinase Signaling System
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Polyphenols/pharmacology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
RNA, Messenger
;
Rabbits
;
Rats
;
Reactive Oxygen Species/metabolism*
;
Signal Transduction
;
Sincalide/pharmacology*
;
Tea
;
Thrombin/pharmacology*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Venous Thrombosis/pathology*
;
Warfarin/pharmacology*
9.Comparison of distribution of verbascoside in normoxic and hypoxic rats.
Mao-Xing LI ; Wei-Gang WANG ; Xiao-Lin LI ; Peng WANG
China Journal of Chinese Materia Medica 2022;47(16):4480-4488
This study established a high performance liquid chromatography(HPLC) method for the simultaneous determination of verbascoside(VB) and its main metabolite caffeic acid(CA) in rat tissue samples. A low-pressure low-oxygen animal experimental chamber was used to simulate the plateau environment for establishing the hypoxic rat model. After intragastric administration of 300 mg·kg~(-1) VB, the normoxic and hypoxic rats were sacrificed for the collection of heart, liver, spleen, lung, kidney, brain, muscle, large intestine, small intestine, and stomach tissue samples at the time points of 30, 60, and 90 min. VB and CA concentrations in each tissue sample were measured by HPLC, and the distribution of VB and CA in normoxic and hypoxic rats was compared. The results showed that after intragastric administration, VB can be rapidly absorbed and distributed into various tissues including brain in both normoxic and hypoxic rats, indicating that VB can pass through the blood-brain barrier. In the gastrointestinal tract, VB was mainly distributed in small intestine, which suggested that the main absorption site of VB was small intestine. A large amount of VB was detected in muscle and lung, and only a small amount in other tissues. CA was detected in other tissues except brain, heart, and muscle. Small intestine had the most abundant CA, followed by stomach, large intestine, and kidney, and only a small amount of CA was detected in the liver, spleen, and lung(<50 ng·mL~(-1)). The results indicated that VB may be mainly absorbed and metabolized in the gastrointestinal tract to produce CA and was possibly excreted through kidney. Compared with normoxic rats, hypoxic rats had reduced and slow distribution of VB and increased ratio of VB concentration in tissue to plasma, which implied that the relative proportion of VB from systemic circulation to tissues was increased in hypoxic rats. This study provides a basis for the application of VB in anti-hypoxia therapy and for the formulation of anti-hypoxia dosing regimens.
Animals
;
Chromatography, High Pressure Liquid
;
Glucosides
;
Hypoxia
;
Phenols
;
Polyphenols
;
Rats
10.Study on metabolites in vivo of Dangefentong Capsules based on UHPLC-Q/Orbitrap-MS/MS.
Xu CHEN ; Zhi-Fang HUANG ; Yun-Hua LIU ; Yu-Hong LIU ; Yan CHEN ; Deng-Yun QIN ; Jin-Hai YI
China Journal of Chinese Materia Medica 2022;47(18):5052-5063
Dangefentong Capsules is a new traditional Chinese medicine preparation for the treatment of diabetic peripheral neuropathy. It is based on the Salviae Miltiorrhizae Radix et Rhizoma-Puerariae Lobatae Radix herb pair with salvianolic acids, tanshinones and pueraria flavonoids as main components. Studying the chemical composition in vivo of Dangefentong Capsules and its metabolites is of great significance for making clear its pharmacodynamic material basis and the action mechanism. The UHPLC-Q/Orbitrap-MS/MS was applied to rapidly analyze the metabolites and metabolic pathways of Dangefentong Capsules in Beagle dogs after gavage. Eclipse plus C_(18) column(2.1 mm×50 mm, 1.8 μm) was used, and gradient elution was performed with 0.1% formic acid aqueous solution(A)-formic acid acetonitrile solution(B). A heated electrospray ion source(HESI) was employed. The scanning mode was set as the positive and negative ion mode, and the mass scanning range was m/z 100-1 000. The plasma, urine and feces samples were collected after male Beagle dogs were administered with Dangefentong Capsules. The prototype components and metabolites were identified by UHPLC-Q/Orbitrap-MS/MS analysis combined with reference substances and references. The results showed that 107 chemical components were identified, including 58 prototype components and 49 metabolites. The identified prototype components included 42 components from Salviae Miltiorrhizae Radix et Rhizoma and 16 components from Puerariae Lobatae Radix. The metabolites consist of 21 and 28 metabolites of Salviae Miltiorrhizae Radix et Rhizoma and Puerariae Lobatae Radix, respectively. They are mainly derived from the methylation, hydroxylation, sulfation and glucuronidation of salvianolic acids, tanshinones and pueraria flavonoids. This research rapi-dly analyzes the chemical components in vivo of Beagle dogs administered with Dangefentong Capsules, laying a basis for illustrating the pharmacodynamic material basis and mechanism of Dangefentong Capsules.
Abietanes
;
Acetonitriles
;
Alkenes
;
Animals
;
Capsules
;
Chromatography, High Pressure Liquid/methods*
;
Dogs
;
Drugs, Chinese Herbal/chemistry*
;
Flavonoids
;
Formates
;
Male
;
Polyphenols
;
Pueraria
;
Tandem Mass Spectrometry


Result Analysis
Print
Save
E-mail