1.Effect of polymer nanoparticles on atherosclerotic lesions and the associated mechanisms: a review.
Hang ZOU ; Yan LONG ; Yuzhen REN ; Tieying YIN
Chinese Journal of Biotechnology 2023;39(4):1390-1402
Polymer nanoparticles generally refer to hydrophobic polymers-based nanoparticles, which have been extensively studied in the nanomedicine field due to their good biocompatibility, efficient long-circulation characteristics, and superior metabolic discharge patterns over other nanoparticles. Existing studies have proved that polymer nanoparticles possess unique advantages in the diagnosis and treatment of cardiovascular diseases, and have been transformed from basic researches to clinical applications, especially in the diagnosis and treatment of atherosclerosis (AS). However, the inflammatory reaction induced by polymer nanoparticles would induce the formation of foam cells and autophagy of macrophages. In addition, the variations in the mechanical microenvironment of cardiovascular diseases may cause the enrichment of polymer nanoparticles. These could possibly promote the occurrence and development of AS. Herein, this review summarized the recent application of polymer nanoparticles in the diagnosis and treatment of AS, as well as the relationship between polymer nanoparticles and AS and the associated mechanism, with the aim to facilitate the development of novel nanodrugs for the treatment of AS.
Humans
;
Polymers/chemistry*
;
Cardiovascular Diseases
;
Nanoparticles/chemistry*
;
Drug Delivery Systems
;
Atherosclerosis/pathology*
2.Preface to the special issue: biotechnology of plastic waste degradation and valorization.
Jie ZHOU ; Tianyuan SU ; Min JIANG ; Qingsheng QI
Chinese Journal of Biotechnology 2023;39(5):1861-1866
Synthetic plastics have been widely used in various fields of the national economy and are the pillar industry. However, irregular production, plastic product use, and plastic waste piling have caused long-term accumulation in the environment, contributing considerably to the global solid waste stream and environmental plastic pollution, which has become a global problem to be solved. Biodegradation has recently emerged as a viable disposal method for a circular plastic economy and has become a thriving research area. In recent years, important breakthroughs have been made in the screening, isolation, and identification of plastic-degrading microorganisms/enzyme resources and their further engineering, which provide new ideas and solutions for treating microplastics in the environment and the closed-loop bio-recycling of waste plastics. On the other hand, the use of microorganisms (pure cultures or consortia) to further transform different plastic degradants into biodegradable plastics and other compounds with high added value is of great significance, promoting the development of a plastic recycling economy and reducing the carbon emission of plastics in their life cycle. We edited a Special Issue on the topic of "Biotechnology of Plastic Waste Degradation and Valorization", focusing on the researches progress in three aspects: Mining microbial and enzyme resources for plastic biodegradation, Design and engineering of plastic depolymerase, and biological high-value transformation of plastic degradants. In total, 16 papers have been collected in this issue including reviews, comments, and research articles, which provide reference and guidance for further development of plastic waste degradation and valorization biotechnology.
Biodegradable Plastics
;
Biodegradation, Environmental
;
Biotechnology
3.Commentary: polymer binding modules accelerate enzymatic degradation of poly(ethylene terephthalate).
Yi LU ; Ruizhi HAN ; Ulrich SCHWANEBERG ; Yu JI
Chinese Journal of Biotechnology 2023;39(5):1883-1888
The large scale production and indiscriminate use of plastics led to serious environmental pollution. To reduce the negative effects of plastics waste on the environment, an approach of enzymatic degradation was put forward to catalyze plastics degradation. Protein engineering strategies have been applied to improve the plastics degrading enzyme properties such as activity and thermal stability. In addition, polymer binding modules were found to accelerate the enzymatic degradation of plastics. In this article, we introduced a recent work published in Chem Catalysis, which studied the role of binding modules in enzymatic hydrolysis of poly(ethylene terephthalate) (PET) at high-solids loadings. Graham et al. found that binding modules accelerated PET enzymatic degradation at low PET loading (< 10 wt%) and the enhanced degradation cannot be observed at high PET loading (10 wt%-20 wt%). This work is beneficial for the industrial application of polymer binding modules in plastics degradation.
Polyethylene Terephthalates/metabolism*
;
Polymers
;
Plastics
;
Ethylenes
4.Advances in methods for detecting plastics biodegradation.
Yuanbo WANG ; Shiyue ZHENG ; Fan WANG ; Junqian PENG ; Jie ZHOU ; Fang WANG ; Min JIANG ; Xiaoqiang CHEN
Chinese Journal of Biotechnology 2023;39(5):1889-1911
The pollution caused by improper handling of plastics has become a global challenge. In addition to recycling plastics and using biodegradable plastics, an alternative solution is to seek efficient methods for degrading plastics. Among them, the methods of using biodegradable enzymes or microorganisms to treat plastics have attracted increasing attention because of its advantages of mild conditions and no secondary environmental pollution. Developing highly efficient depolymerizing microorganisms/enzymes is the core for plastics biodegradation. However, the current analysis and detection methods cannot meet the requirements for screening efficient plastics biodegraders. It is thus of great significance to develop rapid and accurate analysis methods for screening biodegraders and evaluating biodegradation efficiency. This review summarizes the recent application of various commonly used analytical techniques in plastics biodegradation, including high performance liquid chromatography, infrared spectroscopy, gel permeation chromatography, and determination of zone of clearance, with fluorescence analysis techniques highlighted. This review may facilitate standardizing the characterization and analysis of plastics biodegradation process and developing more efficient methods for screening plastics biodegraders.
Biodegradable Plastics/chemistry*
;
Biodegradation, Environmental
5.Synthesis, biodegradation and waste disposal of polylactic acid plastics: a review.
Bin XIE ; Rongrong BAI ; Huashan SUN ; Xiaoli ZHOU ; Weiliang DONG ; Jie ZHOU ; Min JIANG
Chinese Journal of Biotechnology 2023;39(5):1912-1929
With the escalation of plastic bans and restrictions, bio-based plastics, represented by polylactic acid (PLA), have become a major alternative to traditional plastics in the current market and are unanimously regarded as having potential for development. However, there are still several misconceptions about bio-based plastics, whose complete degradation requires specific composting conditions. Bio-based plastics might be slow to degrade when it is released into the natural environment. They might also be harmful to humans, biodiversity and ecosystem function as traditional petroleum-based plastics do. In recent years, with the increasing production capacity and market size of PLA plastics in China, there is an urgent need to investigate and further strengthen the management of the life cycle of PLA and other bio-based plastics. In particular, the in-situ biodegradability and recycling of hard-to-recycle bio-based plastics in the ecological environment should be focused. This review introduces the characteristics, synthesis and commercialization of PLA plastics, summarizes the current research progress of microbial and enzymatic degradation of PLA plastics, and discusses their biodegradation mechanisms. Moreover, two bio-disposal methods against PLA plastic waste, including microbial in-situ treatment and enzymatic closed-loop recycling, are proposed. At last, the prospects and trends for the development of PLA plastics are presented.
Humans
;
Ecosystem
;
Biodegradable Plastics
;
Polyesters
;
Biodegradation, Environmental
6.Advances in biodegradation of polyolefin plastics.
Yingbo YUAN ; Wenkai ZHOU ; Quanfeng LIANG ; Longyang DIAN ; Tianyuan SU ; Qingsheng QI
Chinese Journal of Biotechnology 2023;39(5):1930-1948
Polyolefin plastics are a group of polymers with C-C backbone that have been widely used in various areas of daily life. Due to their stable chemical properties and poor biodegradability, polyolefin plastic waste continues to accumulate worldwide, causing serious environmental pollution and ecological crises. In recent years, biological degradation of polyolefin plastics has attracted considerable attention. The abundant microbial resources in the nature offer the possibility of biodegradation of polyolefin plastic waste, and microorganisms capable of degrading polyolefin have been reported. This review summarizes the research progress on the biodegradation microbial resources and the biodegradation mechanisms of polyolefin plastics, presents the current challenges in the biodegradation of polyolefin plastics, and provides an outlook on future research directions.
Plastics/metabolism*
;
Polymers/metabolism*
;
Polyenes
;
Biodegradation, Environmental
7.Recent progress in the biosynthesis of dicarboxylic acids, a monomer of biodegradable plastics.
Rui ZHI ; Yanbo LU ; Min WANG ; Guohui LI ; Yu DENG
Chinese Journal of Biotechnology 2023;39(5):2081-2094
Plastics are one of the most important polymers with huge global demand. However, the downsides of this polymer are that it is difficult to degrade, which causes huge pollution. The environmental-friendly bio-degradable plastics therefore could be an alternative and eventually fulfill the ever-growing demand from every aspect of the society. One of the building blocks of bio-degradable plastics is dicarboxylic acids, which have excellent biodegradability and numerous industrial applications. More importantly, dicarboxylic acid can be biologically synthesized. Herein, this review discusses the recent advance on the biosynthesis routes and metabolic engineering strategies of some of the typical dicarboxylic acids, in hope that it will help to provide inspiration to further efforts on the biosynthesis of dicarboxylic acids.
Biodegradable Plastics
;
Dicarboxylic Acids
;
Polymers/metabolism*
;
Biodegradation, Environmental
;
Metabolic Engineering
8.Effects of Platycodonis Radix-Curcumae Rhizoma on oral nanoparticle uptake and in vitro inhibition against breast cancer metastasis.
Jiang-Pei SHI ; Rong-Guang ZHANG ; Xiao-Yan GU ; Ying-Wei SUN ; Nian-Ping FENG ; Ying LIU
China Journal of Chinese Materia Medica 2023;48(9):2419-2425
This study combined the herbal pair Platycodonis Radix-Curcumae Rhizoma(PR-CR) possessing an inhibitory effect on tumor cell proliferation and metastasis with the active component of traditional Chinese medicine(TCM) silibinin-loaded nanoparticles(NPs) with a regulatory effect on tumor microenvironment based on the joint effect on tumor cells and tumor microenvironment to inhi-bit cell metastasis. The effects of PR-CR on the cellular uptake of NPs and in vitro inhibition against breast cancer proliferation and metastasis were investigated to provide an experimental basis for improving nanoparticle absorption and enhancing therapeutic effects. Silibinin-loaded lipid-polymer nanoparticles(LPNs) were prepared by the nanoprecipitation method and characterized by transmission electron microscopy. The NPs were spherical or quasi-spherical in shape with obvious core-shell structure. The mean particle size was 107.4 nm, Zeta potential was-27.53 mV. The cellular uptake assay was performed by in vitro Caco-2/E12 coculture cell model and confocal laser scanning microscopy(CLSM), and the results indicated that PR-CR could promote the uptake of NPs. Further, in situ intestinal absorption assay by the CLSM vertical scanning approach showed that PR-CR could promote the absorption of NPs in the enterocytes of mice. The inhibitory effect of NPs on the proliferation and migration of 4T1 cells was analyzed using 4T1 breast cancer cells and co-cultured 4T1/WML2 cells, respectively. The results of the CCK8 assay showed that PR-CR-containing NPs could enhance the inhibition against the proliferation of 4T1 breast cancer cells. The wound healing assay indicated that PR-CR-containing NPs enhanced the inhibition against the migration of 4T1 breast cancer cells. This study enriches the research on oral absorption of TCM NPs and also provides a new idea for utilizing the advantages of TCM to inhibit breast cancer metastasis.
Humans
;
Mice
;
Animals
;
Female
;
Silybin/therapeutic use*
;
Caco-2 Cells
;
Polymers/chemistry*
;
Nanoparticles/chemistry*
;
Cell Line, Tumor
;
Breast Neoplasms/pathology*
;
Tumor Microenvironment
9.Research Advances in Medical Materials and Products for Soft Tissue Repairs.
Jiaqi LI ; Rui WANG ; Qianqian HAN ; Xue SUN
Chinese Journal of Medical Instrumentation 2023;47(4):415-423
Soft tissue is an indispensable tissue in human body. It plays an important role in protecting the body from external physical, chemical or biological factors. Mild soft tissue injuries can self-heal, while severe soft tissue injuries may require related treatment. Natural polymers (such as chitosan, hyaluronic acid, and collagen) and synthetic polymers (such as polyethylene glycol and polylactic acid) exhibit good biocompatibility, biodegradability and low toxicity. It can be used for soft tissue repairs for antibacterial, hemostatic and wound healing purposes. Their related properties can be enhanced through modification or preparation of composite materials. Commonly used soft tissue repairs include wound dressings, biological patches, medical tissue adhesives, and tissue engineering scaffolds. This study introduces the properties, mechanisms of action and applications of various soft tissue repair medical materials, including chitosan, hyaluronic acid, collagen, polyethylene glycol and polylactic acid, and provides an outlook on the application prospects of soft tissue repair medical materials and products.
Humans
;
Biocompatible Materials/chemistry*
;
Chitosan/chemistry*
;
Hyaluronic Acid
;
Tissue Scaffolds/chemistry*
;
Collagen/chemistry*
;
Polymers/chemistry*
;
Polyethylene Glycols
;
Soft Tissue Injuries
10.Effects of rumen microorganisms on the decomposition of recycled straw residue.
Kailun SONG ; Zicheng ZHOU ; Jinhai LENG ; Songwen FANG ; Chunhuo ZHOU ; Guorong NI ; Lichun KANG ; Xin YIN
Journal of Zhejiang University. Science. B 2023;24(4):336-344
Recently, returning straw to the fields has been proved as a direct and effective method to tackle soil nutrient loss and agricultural pollution. Meanwhile, the slow decomposition of straw may harm the growth of the next crop. This study aimed to determine the effects of rumen microorganisms (RMs) on straw decomposition, bacterial microbial community structure, soil properties, and soil enzyme activity. The results showed that RMs significantly enhanced the degradation rate of straw in the soil, reaching 39.52%, which was 41.37% higher than that of the control on the 30th day after straw return. After 30 d, straw degradation showed a significant slower trend in both the control and the experimental groups. According to the soil physicochemical parameters, the application of rumen fluid expedited soil matter transformation and nutrient buildup, and increased the urease, sucrase, and cellulase activity by 10%‒20%. The qualitative analysis of straw showed that the hydroxyl functional group structure of cellulose in straw was greatly damaged after the application of rumen fluid. The analysis of soil microbial community structure revealed that the addition of rumen fluid led to the proliferation of Actinobacteria with strong cellulose degradation ability, which was the main reason for the accelerated straw decomposition. Our study highlights that returning rice straw to the fields with rumen fluid inoculation can be used as an effective measure to enhance the biological value of recycled rice straw, proposing a viable solution to the problem of sluggish straw decomposition.
Animals
;
Rumen/metabolism*
;
Agriculture/methods*
;
Soil/chemistry*
;
Microbiota
;
Bacteria/metabolism*
;
Oryza/metabolism*
;
Soil Microbiology
;
Cellulose

Result Analysis
Print
Save
E-mail