1.Effects of Yiqi Huoxue Jiedu formula on the gut microbiota in elderly patients with pulmonary-derived sepsis based on 16S rDNA sequencing: a multicenter prospective randomized double-blind controlled trial.
Rui CHEN ; Jiahua LAI ; Minlin ZHONG ; Ruifeng ZENG ; Fang LAI ; Yi YU ; Yuntao LIU ; Xiaotu XI ; Jun LI
Chinese Critical Care Medicine 2025;37(5):416-423
OBJECTIVE:
To investigate the effects of the combined Yiqi Huoxue Jiedu formula (YHJF) on intestinal microbiota in elderly patients with pulmonary-derived sepsis and identify potential microbial targets.
METHODS:
A prospective randomized double-blind controlled trial was conducted. Elderly patients with pulmonary infection-induced sepsis admitted to the emergency department of Guangdong Provincial Hospital of Traditional Chinese Medicine (TCM), intensive care unit (ICU) of Fangcun Hospital, and ICU of Daxuecheng Hospital, from November 2020 to October 2021 were enrolled and randomized into two groups. Both groups received conventional Western medicine treatment. The observation group additionally received YHJF (composed of 15 g of Panax ginseng, 9 g of Panax notoginseng, and 3 g of Rheum palmatum, dissolved in 50 mL warm water) orally or via nasogastric tube twice daily for 7 days; while the control group received a placebo. Clinical data and fresh fecal samples were collected before treatment and on days 5-7 of treatment. Intestinal microbiota diversity and structure were analyzed via 16S rDNA sequencing and bioinformatics [α diversity, β diversity, and linear discriminant analysis effect size (LEfSe)].
RESULTS:
Fifty-five patients were included (29 in the control group, 26 in the observation group). There were no significantly differences in gender, age, comorbidities, and baseline sequential organ failure assessment (SOFA), acute physiology and chronic health evaluation II (APACHE II), acute gastrointestinal injury (AGI) classification score, and gastrointestinal failure (GIF) score between the two groups. Compared to the control group, the observation group showed significantly lower serum procalcitonin, APACHE II score, and greater reduction in GIF score by day 7. Thirty fecal samples were collected pre-treatment (baseline group), 29 post-treatment from the control group, and 26 from the observation group. Gut microbiota α diversity analysis revealed that Simpson index in the observation group and control group were significantly decreased compared to the baseline group [0.75 (0.53, 0.91), 0.81 (0.32, 0.91) vs. 0.88 (0.87, 0.89), both P < 0.05], but there was no significantly difference between the observation group and the control group. There were no significantly differences in Chao1, Ace, and Shannon indices among three groups. β diversity analysis indicated that distinct microbiota structures among three groups (R2 = 0.096, P = 0.026). Species difference analysis showed that, at the phylum level, Firmicutes (53.69%), Actinobacteria (16.23%), Proteobacteria (15.39%), and Bacteroidetes (9.57%) dominated, with no significant intergroup differences. At the genus level, 38 taxa showed significant differences. Compared to the control group, the observation group exhibited increased Erysipelatoclostridium (P = 0.014) and Faecalibacterium (P = 0.013), and decreased Bacteroides (P = 0.009), Bilophila (P = 0.005), Eggerthella (P = 0.002), and Collinsella (P = 0.043). LEfSe analysis highlighted Lactobacillus salivarius, Erysipelatoclostridium, Collinsella, Cloacibacillus, and Bacteroides as key discriminators.
CONCLUSION
YHJF combined with conventional therapy alters intestinal microbiota structure in patients with elderly pulmonary-derived sepsis, with Bacteroides, Erysipelatoclostridium, and Collinsella identified as potential microbial targets.
Humans
;
Gastrointestinal Microbiome/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
;
Double-Blind Method
;
Sepsis/drug therapy*
;
Aged
;
Prospective Studies
;
RNA, Ribosomal, 16S/genetics*
;
Male
;
Female
;
Panax notoginseng
;
Rheum
2.A quinolinyl analog of resveratrol improves neuronal damage after ischemic stroke by promoting Parkin-mediated mitophagy.
Qingqi MENG ; Yan MI ; Libin XU ; Yeshu LIU ; Dong LIANG ; Yongping WANG ; Yan WANG ; Yueyang LIU ; Guoliang CHEN ; Yue HOU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(2):214-224
Ischemic stroke (IS) is a prevalent neurological disorder often resulting in significant disability or mortality. Resveratrol, extracted from Polygonum cuspidatum Sieb. et Zucc. (commonly known as Japanese knotweed), has been recognized for its potent neuroprotective properties. However, the neuroprotective efficacy of its derivative, (E)-4-(3,5-dimethoxystyryl) quinoline (RV02), against ischemic stroke remains inadequately explored. This study aimed to evaluate the protective effects of RV02 on neuronal ischemia-reperfusion injury both in vitro and in vivo. The research utilized an animal model of middle cerebral artery occlusion/reperfusion and SH-SY5Y cells subjected to oxygen-glucose deprivation and reperfusion to simulate ischemic conditions. The findings demonstrate that RV02 attenuates neuronal mitochondrial damage and scavenges reactive oxygen species (ROS) through mitophagy activation. Furthermore, Parkin knockdown was found to abolish RV02's ability to activate mitophagy and neuroprotection in vitro. These results suggest that RV02 shows promise as a neuroprotective agent, with the activation of Parkin-mediated mitophagy potentially serving as the primary mechanism underlying its neuroprotective effects.
Animals
;
Ubiquitin-Protein Ligases/genetics*
;
Mitophagy/drug effects*
;
Resveratrol/analogs & derivatives*
;
Neuroprotective Agents/pharmacology*
;
Humans
;
Neurons/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Ischemic Stroke/genetics*
;
Male
;
Quinolines/pharmacology*
;
Mice
;
Fallopia japonica/chemistry*
;
Mitochondria/metabolism*
;
Reperfusion Injury/metabolism*
;
Rats
;
Mice, Inbred C57BL
;
Disease Models, Animal
3.Efficient synthesis of polydatin by a two-enzyme coupled with one-pot method.
Jingli DAI ; Zixu YAN ; Kexue ZHAO ; Xiaoli LI ; Yongjun ZANG ; Qilin XU ; Fucheng ZHU
Chinese Journal of Biotechnology 2025;41(1):461-473
Traditional Chinese medicine of Polygonum cuspidatum has been utilized in China for thousands of years. Its primary active compound, polydatin, exhibits a variety of pharmacological effects including the regulation of glucose and lipid metabolism, suppression of cough and asthma, as well as antibacterial and anti-inflammatory properties. However, conventional methods for polydatin production are inadequate to satisfy the market demand. This study aims to explore the green and efficient preparation of polydatin. With resveratrol as the substrate, we efficiently synthesized polydatin by using the triple mutant IGW (Y14I/I62G/M315W) of the glycosyltransferase UGTBS based on a strategy of two-enzyme coupled with one-pot and realized the recycling of uridine diphosphate-glucose (UDPG). The conditions of the two-enzyme reaction were optimized. Under the conditions of 35 ℃, pH 8.0, IGW: AtSuSy1 activity ratio of 3:4, dimethyl sulfoxide (DMSO) volume fraction of 5%, uridine diphosphate (UDP) concentration of 0.10 mmol/L, and sucrose concentration of 0.6 mol/L, the conversion of 2 mmol/L resveratrol reached 80.6% within 1 h, and the proportion of polydatin was over 90%. This study achieved the recycling of UDPG via a two-enzyme coupling system and shortened the reaction time. At the same time, the fed-batch strategy was adopted, and the yield of polydatin reached 6.28 g/L after 24 h in the one-pot coupling reaction, which provided a new strategy for green and efficient preparation of polydatin.
Stilbenes/chemistry*
;
Glucosides/biosynthesis*
;
Resveratrol
;
Fallopia japonica/chemistry*
;
Glycosyltransferases/genetics*
4.Effect of total flavonoids of buckwheat flower and leaf on myocardial cell apoptosis and Wnt/β-catenin/PPARγ pathway in arrhythmic rats.
Wei-Ping HE ; Jin-Cheng LI ; Gao-Ming WANG
China Journal of Chinese Materia Medica 2023;48(1):220-225
This paper aimed to investigate the effect of total flavonoids of buckwheat flower and leaf on myocardial cell apoptosis and Wnt/β-catenin/peroxisome proliferator-activated receptor γ(PPARγ) pathway in arrhythmic rats. SD rats were randomly divided into a control group, a model group, a low-dose(20 mg·kg~(-1)) group of total flavonoids of buckwheat flower and leaf, a medium-dose(40 mg·kg~(-1)) group of total flavonoids of buckwheat flower and leaf, a high-dose(80 mg·kg~(-1)) group of total flavonoids of buckwheat flower and leaf, a propranolol hydrochloride(2 mg·kg~(-1)) group, with 12 rats in each group. Except the control group, rats in other groups were prepared as models of arrhythmia by sublingual injection of 1 mL·kg~(-1) of 0.002% aconitine. After grouping and intervention with drugs, the arrhythmia, myocardial cells apoptosis, myocardial tissue glutathione peroxidase(GSH-Px), catalase(CAT), malondialdehyde(MDA), serum interleukin-6(IL-6), prostaglandin E2(PGE2) levels, myocardial tissue apoptosis, and Wnt/β-catenin/PPARγ pathway-related protein expression of rats in each group were measured. As compared with the control group, the arrhythmia score, the number of ventricular premature beats, ventricular fibrillation duration, myocardial cell apoptosis rate, MDA levels in myocardial tissues, serum IL-6 and PGE2 levels, Bax in myocardial tissues, and Wnt1 and β-catenin protein expression levels increased significantly in the model group, whereas the GSH-Px and CAT levels, and Bcl-2 and PPARγ protein expression levels in myocardial tissues reduced significantly. As compared with the model group, the arrhythmia score, the number of ventricular premature beats, ventricular fibrillation duration, myocardial cell apoptosis rate, MDA leve in myocardial tissues, serum IL-6 and PGE2 levels, Bax in myocardial tissues, and Wnt1 and β-catenin protein expression levels reduced in the drug intervention groups, whereas the GSH-Px and CAT levels and Bcl-2 and PPARγ protein expression levels in myocardial tissues increased. The groups of total flavonoids of buckwheat flower and leaf were in a dose-dependent manner. There was no significant difference in the levels of each index in rats between the propranolol hydrochloride group and the high-dose group of total flavonoids of buckwheat flower and leaf. The total flavonoids of buckwheat flower and leaf inhibit the activation of Wnt/β-catenin pathway, up-regulate the expression of PPARγ, reduce oxidative stress and inflammatory damage in myocardial tissues of arrhythmic rats, reduce myocardial cell apoptosis, and improve the symptoms of arrhythmia in rats.
Rats
;
Animals
;
PPAR gamma/metabolism*
;
Fagopyrum/genetics*
;
Rats, Sprague-Dawley
;
bcl-2-Associated X Protein
;
beta Catenin/metabolism*
;
Interleukin-6
;
Flavonoids/pharmacology*
;
Propranolol/pharmacology*
;
Ventricular Fibrillation
;
Dinoprostone
;
Wnt Signaling Pathway
;
Plant Leaves/metabolism*
;
Flowers/metabolism*
;
Apoptosis
;
Cardiac Complexes, Premature
5.Variation and interaction mechanism between active components in Rheum officinale and rhizosphere soil microorganisms under drought stress.
Feng-Pu XIE ; Nan WANG ; Jing GAO ; Gang ZHANG ; Zhong-Xing SONG ; Yuan-Yuan LI ; Ya-Li ZHANG ; Duo-Yi WANG ; Rui LI ; Mi-Mi LIU ; Zhi-Shu TANG
China Journal of Chinese Materia Medica 2023;48(6):1498-1509
To explore the changes and the reaction mechanisms between soil microecological environment and the content of secon-dary metabolites of plants under water deficit, this study carried out a pot experiment on the 3-leaf stage seedlings of Rheum officinale to analyze their response mechanism under different drought gradients(normal water supply, mild, moderate, and severe drought). The results indicated that the content of flavonoids, phenols, terpenoids, and alkaloids in the root of R. officinale varied greatly under drought stresses. Under mild drought stress, the content of substances mentioned above was comparatively high, and the content of rutin, emodin, gallic acid, and(+)-catechin hydrate in the root significantly increased. The content of rutin, emodin, and gallic acid under severe drought stress was significantly lower than that under normal water supply. The number of species, Shannon diversity index, richness index, and Simpson index of bacteria in the rhizosphere soil were significantly higher than those in blank soil, and the number of microbial species and richness index decreased significantly with the aggravation of drought stresses. In the context of water deficit, Cyanophyta, Firmicutes, Actinobacteria, Chloroflexi, Gemmatimonadetes, Streptomyces, and Actinomyces were the dominant bacteria in the rhizosphere of R. officinale. The relative content of rutin and emodin in the root of R. officinale was positively correlated with the relative abundance of Cyanophyta and Firmicutes, and the relative content of(+)-catechin hydrate and(-)-epicatechin gallate was positively correlated with the relative abundance of Bacteroidetes and Firmicutes. In conclusion, appropriate drought stress can increase the content of secondary metabolites of R. officinale from physiological induction and the increase in the association with beneficial microbe.
Rhizosphere
;
Rheum
;
Droughts
;
Soil
;
Catechin
;
Emodin
;
Bacteria/metabolism*
;
Water/metabolism*
;
Firmicutes
;
Soil Microbiology
6.Site-directed mutagenesis enhances the activity of benzylidene acetone synthase of polyketide synthase from Polygonum cuspidatum.
Zhimin HE ; Wenrui MA ; Liping YU ; Heshu LÜ ; Mingfeng YANG
Chinese Journal of Biotechnology 2023;39(7):2806-2817
Polygonum cuspidatum polyketide synthase 1 (PcPKS1) has the catalytic activity of chalcone synthase (CHS) and benzylidene acetone synthase (BAS), which can catalyze the production of polyketides naringenin chalcone and benzylidene acetone, and then catalyze the synthesis of flavonoids or benzylidene acetone. In this study, three amino acid sites (Thr133, Ser134, Ser33) that may affect the function of PcPKS1 were identified by analyzing the sequences of PcPKS1, the BAS from Rheum palmatum and the CHS from Arabidopsis thaliana, as well as the conformation of the catalytic site of the enzyme. Molecular modification of PcPKS1 was carried out by site-directed mutagenesis, and two mutants were successfully obtained. The in vitro enzymatic reactions were carried out, and the differences in activity were detected by high performance liquid chromatography (HPLC). Finally, mutants T133LS134A and S339V with bifunctional activity were obtained. In addition to bifunctional activities of BAS and CHS, the modified PcPKS1 had much higher BAS activity than that of the wild type PcPKS1 under the conditions of pH 7.0 and pH 9.0, respectively. It provides a theoretical basis for future use of PcPKS1 in genetic engineering to regulate the biosynthesis of flavonoids and raspberry ketones.
Amino Acid Sequence
;
Fallopia japonica/metabolism*
;
Polyketide Synthases/chemistry*
;
Acetone
;
Mutagenesis, Site-Directed
;
Flavonoids/metabolism*
;
Acyltransferases/metabolism*
7.Lipidomic investigation of the protective effects of Polygonum perfoliatum against chemical liver injury in mice.
Lei PENG ; Hua-Guo CHEN ; Xin ZHOU
Journal of Integrative Medicine 2023;21(3):289-301
OBJECTIVE:
Recent investigations have demonstrated that Polygonum perfoliatum L. can protect against chemical liver injury, but the mechanism behind its efficacy is still unclear. Therefore, we studied the pharmacological mechanism at work in P. perfoliatum protection against chemical liver injury.
METHODS:
To evaluate the activity of P. perfoliatum against chemical liver injury, levels of alanine transaminase, lactic dehydrogenase, aspartate transaminase, superoxide dismutase, glutathione peroxidase and malondialdehyde were measured, alongside histological assessments of the liver, heart and kidney tissue. A nontargeted lipidomics strategy based on ultra-performance liquid chromatography quadrupole-orbitrap high-resolution mass spectrometry method was used to obtain the lipid profiles of mice with chemical liver injury and following treatment with P. perfoliatum; these profiles were used to understand the possible mechanisms behind P. perfoliatum's protective activity.
RESULTS:
Lipidomic studies indicated that P. perfoliatum protected against chemical liver injury, and the results were consistent between histological and physiological analyses. By comparing the profiles of liver lipids in model and control mice, we found that the levels of 89 lipids were significantly changed. In animals receiving P. perfoliatum treatment, the levels of 8 lipids were significantly improved, relative to the model animals. The results showed that P. perfoliatum extract could effectively reverse the chemical liver injury and significantly improve the abnormal liver lipid metabolism of mice with chemical liver injury, especially glycerophospholipid metabolism.
CONCLUSION
Regulation of enzyme activity related to the glycerophospholipid metabolism pathway may be involved in the mechanism of P. perfoliatum's protection against liver injury. Please cite this article as: Peng L, Chen HG, Zhou X. Lipidomic investigation of the protective effects of Polygonum perfoliatum against chemical liver injury in mice. J Integr Med. 2023; 21(3): 289-301.
Animals
;
Mice
;
Polygonum/chemistry*
;
Lipidomics
;
Liver
;
Lipids/pharmacology*
;
Glycerophospholipids/pharmacology*
;
Chemical and Drug Induced Liver Injury/metabolism*
8.Mechanism of combined treatment of rhein and emodin in Rhubarb for ulcerative colitis.
Fei GAO ; Hui-Yun ZHONG ; Ke-Xi CHEN ; Ling-Ling DONG ; Mei-Si LIN ; Hong-Ling DU
China Journal of Chinese Materia Medica 2022;47(15):4148-4155
This study aimed to explore the efficacy and mechanism of combined rhein and emodin in the treatment of ulcerative colitis(UC) from the aspects of network pharmacology, animal inflammation improvement and molecular mechanism. Network pharmacology predicted that combined rhein and emodin acted on 52 potential targets, mainly participating in signaling pathways such as cancer, PI3 K/AKT, microRNAs in cancer and apoptosis. PI3 K/AKT signaling pathway has been reported to be closely related to UC, and the optimal candidate pathway for combined therapy. The UC mice model was established by dextran sodium sulfate, and then the modeled mice were randomly divided into control group, model group, rhein group, emodin group, rhein+emodin group and sulfasalazine group. After administration, compared with the conditions in model group, body weight, disease activity index(DAI) score, colon length, TNF-α, IL-6, IL-1β and myeloperoxidase(MPO) of mice in rhein+emodin group were improved(P<0.01); colonic mucosal injury was significantly reduced; the expression of p-PI3 K/PI3 K and p-AKT/AKT proteins were down-regulated(P<0.01). All the above indices were better than those in the rhein/emodin group alone. The Jin's Q-values of the effect of combined rhein and emodin on colon length, TNF-α, IL-6, IL-1β, MPO, p-PI3 K/PI3 K and p-AKT/AKT were all greater than 1.15, which indicated that there was obvious synergistic effect between rhein and emodin. In all, rhein and emodin have synergistic effect in the treatment of UC, and the mechanism may be related to the inhibition of PI3 K/AKT signaling pathway and the down-regulation of proinflammatory factors. They are the new components in the treatment of UC, which is worthy of attention.
Animals
;
Anthraquinones
;
Colitis, Ulcerative/metabolism*
;
Colon
;
Disease Models, Animal
;
Emodin/pharmacology*
;
Interleukin-6/metabolism*
;
Mice
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rheum
;
Tumor Necrosis Factor-alpha/metabolism*
9.Rumex acetosella Inhibits Platelet Function via Impaired MAPK and Phosphoinositide 3-Kinase Signaling.
Bo-Ra JEON ; Muhammad IRFAN ; Seung Eun LEE ; Jeong Hoon LEE ; Man Hee RHEE
Chinese journal of integrative medicine 2022;28(9):802-808
OBJECTIVE:
To examine the antiplatelet and antithrombotic activity of Rumex acetosella extract.
METHODS:
Standard light aggregometry was used for platelet aggregation, intracellular calcium mobilization assessed using Fura-2/AM, granule secretion (ATP release) by luminometer, and fibrinogen binding to integrin αIIbβ3 detected using flow cytometry. Western blotting is carried out to determine the phosphorylation of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt signaling.
RESULTS:
Rumex acetosella displayed the ability to inhibit platelet aggregation, calcium mobilization, granule secretion, and fibrinogen binding to integrin αIIbβ3. Rumex acetosella has also down-regulated MAPK and PI3K/Akt phosphorylation (all P<0.01).
CONCLUSION
Rumex acetosella extract exhibits antiplatelet activity via modulating GPVI signaling, and it may protect against the development of platelet-related cardiovascular diseases.
Blood Platelets/metabolism*
;
Calcium/metabolism*
;
Fibrinogen/metabolism*
;
Mitogen-Activated Protein Kinases/metabolism*
;
Phosphatidylinositol 3-Kinase/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Phosphorylation
;
Plant Extracts/pharmacology*
;
Platelet Aggregation
;
Platelet Aggregation Inhibitors/pharmacology*
;
Platelet Glycoprotein GPIIb-IIIa Complex/pharmacology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rumex/metabolism*
10.Pharmacokinetic study of Polygonum orientale extract in H9c2 cells by UPLC-MS/MS.
Yuan LU ; Na LI ; Ting LYU ; Yong-Lin WANG ; Jie PAN ; Jia SUN ; Yong-Jun LI ; Chun-Hua LIU
China Journal of Chinese Materia Medica 2021;46(18):4833-4840
A detection method of ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) was established to detect concentrations of isoorientin, orientin, quercetin, vitexin and kaempferol-3-O-β-D-glucoside in H9 c2 cells and applied to the pharmacokinetic study of Polygonum orientale extract in the cells. H9 c2 cells were treated with 100 μg·mL~(-1) P. orientale extract and then they and the corresponding nuclei, mitochondria and Golgi bodies were collected at the set time. After protein precipitation, UPLC-MS/MS was used to determine concentrations of isoorientin, orientin, quercetin, vitexin and kaempferol-3-O-β-D-glucoside in the whole cells and subcellular structures. Also, related pharmacokinetic parameters were calculated. The results showed that the peak time was 8 h for all these components. Orientin, vitexin, quercetin and isoorientin have high affinities to nuclei and mitochondria, while the affinity of kaempferol-3-O-β-D-glucoside is higher with mitochondria compared to nuclei. It is suggested that these chemical components of P. orientale may mainly act on nuclei or mitochondria to exert pharmacological effects of protecting cardiomyocytes.
Chromatography, High Pressure Liquid
;
Chromatography, Liquid
;
Drugs, Chinese Herbal
;
Polygonum
;
Tandem Mass Spectrometry

Result Analysis
Print
Save
E-mail