1.Mechanism of core acupoints of acupuncture for polycystic ovary syndrome based on data mining and network acupuncture medicine.
Xinye GAO ; Qianhan LIU ; Yifei WANG ; Tingyuan YANG ; Wenci ZHANG ; Can LIU ; Shuxiu ZHU ; Lei ZHANG
Chinese Acupuncture & Moxibustion 2025;45(12):1846-1858
OBJECTIVE:
To analyze the acupoint selection patterns and core prescriptions of acupuncture for polycystic ovary syndrome (PCOS) using data mining, and to explore the molecular mechanisms of core acupoints through network acupuncture medicine.
METHODS:
The randomized controlled trials (RCTs) on acupuncture for PCOS published from January 1, 2004 to July 21, 2024 were retrieved from CNKI, VIP, Wanfang, PubMed, and Web of Science databases. R software (version 4.4.0) was used for acupoint frequency and association rule analysis to identify core acupoint prescriptions. Potential targets were predicted via the STITCH and Swiss Target Prediction databases, and a "core prescription-active compounds-targets- PCOS" network was constructed. Cytoscape 3.7.1 was applied to build protein-protein interaction (PPI) networks of potential targets of core acupoint prescriptions. Key therapeutic targets were subjected to gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses using the DAVID and Microbioinformatics platforms.
RESULTS:
A total of 176 RCTs were included, covering 208 prescriptions and 89 acupoints. The five most frequently used acupoints were Guanyuan (CV4), Sanyinjiao (SP6), Zigong (EX-CA1), Zusanli (ST36) and Zhongji (CV3). Association rule analysis yielded 13 core acupoint combinations, with Guanyuan (CV4), Sanyinjiao (SP6), Zigong (EX-CA1) and Zusanli (ST36) as the core prescription. Twenty-seven active compounds were involved, with 852 potential therapeutic targets, among which 208 targets overlapped with PCOS-related targets. Network acupuncture medicine analysis suggested that the core prescription may act through targets such as estrogen receptor 1 (ESR1), proto-oncogene tyrosine-protein kinase Src (SRC), signal transducer and activator of transcription 3 (STAT3), peroxisome proliferator-activated receptor gamma (PPARG), and RAC-alpha serine/threonine-protein kinase (AKT1). GO and KEGG analyses indicated that the main pathways included the hypoxia-inducible factor 1 (HIF-1) signaling pathway, phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) signaling pathway, and advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE) signaling pathway, involving processes such as signal transduction, receptor complex formation, and cytokine activity.
CONCLUSION
The core acupoint prescription for PCOS might exert therapeutic effects through multiple targets and pathways, providing a theoretical basis for mechanistic research on acupoint prescriptions.
Humans
;
Acupuncture Therapy
;
Data Mining
;
Acupuncture Points
;
Polycystic Ovary Syndrome/metabolism*
;
Female
;
Protein Interaction Maps
;
Randomized Controlled Trials as Topic
2.SIRT3 protects endometrial receptivity in patients with polycystic ovary syndrome.
Zhonghong ZENG ; Hongying SHAN ; Mingmei LIN ; Siyu BAO ; Dan MO ; Feng DENG ; Yang YU ; Yihua YANG ; Ping ZHOU ; Rong LI
Chinese Medical Journal 2025;138(10):1225-1235
BACKGROUND:
The sirtuin family is well recognized for its crucial involvement in various cellular processes. Nevertheless, studies on its role in the human endometrium are limited. This study aimed to explore the expression and localization of the sirtuin family in the human endometrium, focusing on sirtuin 3 (SIRT3) and its potential role in the oxidative imbalance of the endometrium in polycystic ovary syndrome (PCOS).
METHODS:
Endometrial specimens were collected from both patients with PCOS and controls undergoing hysteroscopy at the Center for Reproductive Medicine, Peking University Third Hospital, from July to August 2015 and used for cell culture. The protective effects of SIRT3 were investigated, and the mechanism of SIRT3 in improving endometrial receptivity of patients with PCOS was determined using various techniques, including cellular bioenergetic analysis, small interfering ribonucleic acid (siRNA) silencing, real-time quantitative polymerase chain reaction, Western blot, immunofluorescence, immunohistochemistry, and flow cytometry analysis.
RESULTS:
The sirtuin family was widely expressed in the human endometrium, with SIRT3 showing a significant increase in expression in patients with PCOS compared with controls ( P <0.05), as confirmed by protein and gene assays. Concurrently, endometrial antioxidant levels were elevated, while mitochondrial respiratory capacity was reduced, in patients with PCOS ( P <0.05). An endometrial oxidative stress (OS) model revealed that the downregulation of SIRT3 impaired the growth and proliferation status of endometrial cells and reduced their receptivity to day 4 mouse embryos. The results suggested that SIRT3 might be crucial in maintaining normal cellular state by regulating antioxidants, cell proliferation, and apoptosis, thereby contributing to enhanced endometrial receptivity.
CONCLUSIONS
Our findings proposed a significant role of SIRT3 in improving endometrial receptivity in patients with PCOS by alleviating OS and regulating the balance between cell proliferation and apoptosis. Therefore, SIRT3 could be a promising target for predicting and improving endometrial receptivity in this patient population.
Humans
;
Female
;
Polycystic Ovary Syndrome/metabolism*
;
Endometrium/metabolism*
;
Sirtuin 3/genetics*
;
Oxidative Stress/genetics*
;
Adult
;
Animals
;
Mice
;
Apoptosis/physiology*
;
Immunohistochemistry
;
Cell Proliferation/physiology*
3.Mechanism of Yuzhi Zhixue Granules in treating polycystic ovary syndrome with insulin resistance in rats via metabolomics and proteomics.
Cong-Hui ZHANG ; Hai-Xin XIANG ; Xiu-Wen WANG ; He XIAO ; Fang-Jiao WEI ; Jing-Chun YAO ; En-Li WANG
China Journal of Chinese Materia Medica 2025;50(12):3368-3376
Metabonomics and proteomics were employed to investigate the mechanism of Yuzhi Zhixue Granules in treating polycystic ovary syndrome with insulin resistance(PCOS-IR). The disease model was established by feeding a high-fat diet and gavage of letrozole solution and it was then treated with different doses of Yuzhi Zhixue Granules. The therapeutic effect of Yuzhi Zhixue Granules was evaluated based on the body mass, homeostasis model assessment of insulin resistance and insulin sensitivity index, serum levels of adipokines, and histopathological changes of rats. Metabolomics and proteomics were employed to find the action pathways of Yuzhi Zhixue Granules. The results showed that Yuzhi Zhixue Granules reduced the body mass, improved the insulin sensitivity and aromatase activity, improved the levels of leptin, adiponectin and other adipokines, and alleviated insulin resistance, histopathological changes, and metabolic disorders in PCOS-IR rats. Metabolomics results revealed 14 metabolites with altered levels in the ovarian tissue, which were closely related to glutathione metabolism and pyruvate metabolism. Proteomics results showed that the therapeutic effect of Yuzhi Zhixue Granules was mainly related to the adipokine, adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK), phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt), forkhead box protein O(FoxO), and mechanistic target of rapamycin(mTOR) signaling pathways. Western blot results showed that compared with the model group, Yuzhi Zhixue Granules treatment decreased the p-AMPK/AMPK and p-FoxO1/FoxO1 levels, increased the p-mTOR/mTOR level, and up-regulated the expression level of recombinant glucose transporter 4(GLUT4). Yuzhi Zhixue Granules can balance amino acid metabolism and pyruvate metabolism by regulating the AMPK/mTOR/FoxO/GLUT pathway to maintain the homeostasis of the ovarian environment and alleviate insulin resistance, thus treating PCOS-IR.
Animals
;
Female
;
Insulin Resistance
;
Polycystic Ovary Syndrome/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Metabolomics
;
Proteomics
;
Rats, Sprague-Dawley
;
Humans
;
Ovary/metabolism*
;
Signal Transduction/drug effects*
4.Electroacupuncture Improves Pregnancy Outcomes of Assisted Reproduction and Mitochondrial Function of Granulosa Cells in Patients with Polycystic Ovary Syndrome of Phlegm-Dampness Syndrome.
Cong-Hui PANG ; Dan-Yang GUO ; Qi WANG ; Ke-Hua WANG ; Fang LIAN
Chinese journal of integrative medicine 2025;31(12):1105-1112
OBJECTIVE:
To explore the effects of electroacupuncture (EA) on pregnancy outcomes after assisted reproduction and mitochondrial function of granulosa cells (GCs) in patients with polycystic ovary syndrome (PCOS) and phlegm-dampness syndrome.
METHODS:
In this randomized controlled trial, 90 infertile women with PCOS and phlegm-dampness syndrome were recruited between August 2022 and December 2022. Patients were randomly assigned to the EA and control groups using a random sequence of codes in the order of enrolment, with 45 in in each group. Both groups underwent the ovarian stimulation protocol. The patients in the EA group received EA therapy including Zhongwan (CV 12), Qihai (CV 6), bilateral Xuehai (SP 10), Sanyinjiao (SP 6), Yinlingquan (SP 9), Tianshu (ST 25), Zusanli (ST 36), and Fenglong (ST 40), and the patients in the control group was treated with pseudo-acupuncture. The intervention was 25 min twice a week for a total of 6 times until the trigger day after menstruation had ended in the cycle before oocyte retrieval. The primary outcomes were clinical pregnancy rate (CPR) and the number of high-quality embryos. The secondary outcomes were (1) pregnancy-related indicators, including fresh embryo transfer rate (ETR), ovarian hyperstimulation syndrome (OHSS) rate, early pregnancy loss rate (ePLR), ectopic pregnancy rate, live birth rate (LBR), and cumulative CPR; (2) mitochondrial autophagy and mitochondrial membrane potential (MMP) in GCs; and (3) scoring for Chinese medicine syndrome. Adverse events to assess clinical safety were also monitored.
RESULTS:
The cumulative CPR was significantly higher in the EA group (42/45, 93.3%) than in the control group (38/45, 84.4%, P=0.036). The number of high-quality embryos and fresh ETR in the EA group were higher than those in the control group (3.80±1.65 vs. 2.44±1.34, P<0.001; 46.7% vs 24.4%, P=0.028). Ectopic pregnancies were not observed in either group. There were no significant differences in the fresh CPR, OHSS rate, ePLR or LBR between the two groups (P>0.05). Compared with the control group, the EA group showed lower expression levels of miR-146a-5p mRNA and P62 protein in GCs and higher levels of MMP and the LC3-II/LC3-I protein ratio (all P<0.01). The phlegm-dampness syndrome scores of the EA group were significantly lower than those of the control group (P<0.01).
CONCLUSIONS
EA significantly improved pregnancy outcomes in patients with PCOS and phlegm dampness syndrome. Mechanistically, this effect may be related to EA in decreasing miR-146a-5p mRNA expression, promoting mitochondrial autophagy in GCs, and improving mitochondrial function, which may contribute to improved oocyte quality. (Trial registration No. ChiCTR2200062915).
Humans
;
Female
;
Polycystic Ovary Syndrome/therapy*
;
Pregnancy
;
Electroacupuncture
;
Granulosa Cells/metabolism*
;
Adult
;
Mitochondria/metabolism*
;
Pregnancy Outcome
;
Pregnancy Rate
;
Reproductive Techniques, Assisted
;
Infertility, Female/therapy*
5.Expression of transcription factors in polycystic ovary syndrome.
Qi ZHANG ; Shujuan ZHU ; Bin JIANG
Journal of Central South University(Medical Sciences) 2025;50(3):447-456
OBJECTIVES:
Polycystic ovary syndrome (PCOS) is a common endocrine disorder that affects women's health. This study aims to investigate gene and transcription factor (TF) expression differences between PCOS patients and healthy individuals using bioinformatics approaches, and to verify the function of key transcription factors, with the goal of providing new insights into the pathogenesis of PCOS.
METHODS:
Differentially expressed genes (DEGs) and differentially expressed transcription factors (DETFs) between PCOS patients and controls were identified from the RNA sequencing dataset GSE168404 using bioinformatics methods. Functional enrichment analysis was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The expression and function of core transcription factors were further validated in ovarian tissues of PCOS model mice and control mice using Western blotting and reverse transcription quantitative polymerase chain reaction (RT-qPCR).
RESULTS:
A total of 332 DEGs were identified between PCOS patients and controls, including 259 upregulated and 73 downregulated genes in the PCOS group. 19 DETFs were further screened, of which 16 were upregulated and 3 were downregulated in PCOS. The upregulated DETFs (including TFCP2L1, DACH1, ESR2, AFF3, SMAD9, ZNF331, HOPX,ATOH8, HIF3α, DPF3, HOXC4, HES1, ID1, JDP2, SOX4, and ID3) were primarily associated with lipid metabolism, development, and cell adhesion. Protein and mRNA expression analysis in PCOS model mice revealed significantly decreased levels of hypoxia-inducible factor (HIF) 1α and HIF2α, and significantly increased expression of HIF3α compared to control mice (all P<0.001).
CONCLUSIONS
Significant differences in gene and TF expression exist between PCOS patients and healthy individuals. HIF-3α may play a crucial role in PCOS and could serve as a novel biomarker for diagnosis and a potential therapeutic target.
Polycystic Ovary Syndrome/metabolism*
;
Female
;
Humans
;
Animals
;
Mice
;
Transcription Factors/metabolism*
;
Computational Biology
;
Gene Expression Profiling
;
Adult
6.Decreased neurotensin induces ovulatory dysfunction via the NTSR1/ERK/EGR1 axis in polycystic ovary syndrome.
Dongshuang WANG ; Meiling ZHANG ; Wang-Sheng WANG ; Weiwei CHU ; Junyu ZHAI ; Yun SUN ; Zi-Jiang CHEN ; Yanzhi DU
Frontiers of Medicine 2025;19(1):149-169
Polycystic ovary syndrome (PCOS) is the predominant cause of subfertility in reproductive-aged women; however, its pathophysiology remains unknown. Neurotensin (NTS) is a member of the gut-brain peptide family and is involved in ovulation; its relationship with PCOS is unclear. Here, we found that NTS expression in ovarian granulosa cells and follicular fluids was markedly decreased in patients with PCOS. In the in vitro culture of cumulus-oocyte complexes, the neurotensin receptor 1 (NTSR1) antagonist SR48692 blocked cumulus expansion and oocyte meiotic maturation by inhibiting metabolic cooperation and damaging the mitochondrial structure in oocytes and surrounding cumulus cells. Furthermore, the ERK1/2-early growth response 1 pathway was found to be a key downstream mediator of NTS/NTSR1 in the ovulatory process. Animal studies showed that in vivo injection of SR48692 in mice reduced ovulation efficiency and contributed to irregular estrus cycles and polycystic ovary morphology. By contrast, NTS partially ameliorated the ovarian abnormalities in mice with dehydroepiandrosterone-induced PCOS. Our findings highlighted the critical role of NTS reduction and consequent abnormal NTSR1 signaling in the ovulatory dysfunction of PCOS, suggesting a potential strategy for PCOS treatment.
Polycystic Ovary Syndrome/physiopathology*
;
Female
;
Animals
;
Neurotensin/metabolism*
;
Receptors, Neurotensin/antagonists & inhibitors*
;
Mice
;
Ovulation/drug effects*
;
Humans
;
Granulosa Cells/metabolism*
;
Adult
;
Oocytes/metabolism*
;
MAP Kinase Signaling System
;
Signal Transduction
;
Follicular Fluid/metabolism*
;
Disease Models, Animal
;
Gonadotropin-Releasing Hormone/analogs & derivatives*
7.Research progress of fetuin-B in the female reproductive system.
Xiao WANG ; Hong-Yan LYU ; De-Quan CHEN ; Bo CHANG ; Ting-Ting YAO
Acta Physiologica Sinica 2024;76(6):1019-1031
Fetuin-B (FETUB) is a glycoprotein mainly synthesized and secreted by the liver. It is involved in many physiological and pathological processes including glucose metabolism, inflammatory response, nonalcoholic fatty liver disease, myocardial infarction, tumor and so on. In recent years, FETUB has also been confirmed to play roles in the female reproductive system. FETUB may affect follicular development and play an important role in in vivo and in vitro fertilization. In addition, serum FETUB level is elevated significantly during pregnancy and labor. FETUB expression is changed in a variety of reproductive diseases (polycystic ovary syndrome, gestational diabetes mellitus, intrahepatic cholestasis of pregnancy). In this review, we summarize FETUB related studies in female reproduction, and focus on the roles of FETUB in female reproductive physiology and pathology, in order to provide information for the pathogenesis of reproductive disorders.
Humans
;
Female
;
Pregnancy
;
Polycystic Ovary Syndrome/physiopathology*
;
Fetuin-B/physiology*
;
Pregnancy Complications/metabolism*
;
Animals
;
Diabetes, Gestational/physiopathology*
;
Cholestasis, Intrahepatic/metabolism*
;
Reproduction/physiology*
;
Ovarian Follicle/physiology*
8.Expression of PGRMC1 in patients with polycystic ovary syndrome and its molecular mechanism for regulating ovarian granulosa cell apoptosis and glucolipid metabolism.
Jiahe ZHOU ; Zhijing CHEN ; Jieming LI ; Qundi DENG ; Xiuhong PENG ; Li LI
Journal of Central South University(Medical Sciences) 2023;48(4):538-549
OBJECTIVES:
Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases in women with reproductive age, which is associated with hyperandrogenism, insulin resistance, and ovulatory dysfunction. Progesterone receptor membrane component 1 (PGRMC1) can mediate progesterone to inhibit the apoptosis of ovarian granulosa cells and the growth of follicles, and to induce glucolipid metabolism disorder in ovarian granulosa cells, which is closely related to the occurrence and development of PCOS. This study aims to determine the expression of PGRMC1 in serum, ovarian tissue, ovarian granulosa cells, and follicular fluid in PCOS patients and non-PCOS patients, analyze the value of PGRMC1 in diagnosis and prognosis evaluation of PCOS, and investigate its molecular mechanism on ovarian granulosa cell apoptosis and glucolipid metabolism.
METHODS:
A total of 123 patients were collected from the Department of Obstetrics and Gynecology in Guangdong Women and Children Hospital (hereinafter referred to as "our hospital") from August 2021 to March 2022 and divided into 3 groups: a PCOS pre-treatment group (n=42), a PCOS treatment group (n=36), and a control group (n=45). The level of PGRMC1 in serum was detected by enzyme linked immunosorbent assay (ELISA). The diagnostic and prognostic value of PGRMC1 was evaluated in patients with PCOS by receiver operating characteristic (ROC) curve. Sixty patients who underwent a laparoscopic surgery from the Department of Obstetrics and Gynecology in our hospital from January 2014 to December 2016 were collected and divided into a PCOS group and a control group (n=30). The expression and distribution of PGRMC1 protein in ovarian tissues were detected by immunohistochemical staining. Twenty-two patients were collected from Reproductive Medicine Center in our hospital from December 2020 to March 2021, and they divided into a PCOS group and a control group (n=11). ELISA was used to detect the level of PGRMC1 in follicular fluid; real-time RT-PCR was used to detect the expression level of PGRMC1 mRNA in ovarian granulosa cells. Human ovarian granular cell line KGN cells were divided into a scrambled group which was transfected with small interfering RNA (siRNA) without interference and a siPGRMC1 group which was transfected with specific siRNA targeting PGRMC1. The apoptotic rate of KGN cells was detected by flow cytometry. The mRNA expression levels of PGRMC1, insulin receptor (INSR), glucose transporter 4 (GLUT4), very low density lipoprotein receptor (VLDLR), and low density lipoprotein receptor (LDLR) were determined by real-time RT-PCR.
RESULTS:
The serum level of PGRMC1 in the PCOS pre-treatment group was significantly higher than that in the control group (P<0.001), and the serum level of PGRMC1 in the PCOS treatment group was significantly lower than that in the PCOS pre-treatment group (P<0.001). The areas under curve (AUC) of PGRMC1 for the diagnosing and prognosis evaluation of PCOS were 0.923 and 0.893, respectively, and the cut-off values were 620.32 and 814.70 pg/mL, respectively. The positive staining was observed on both ovarian granulosa cells and ovarian stroma, which the staining was deepest in the ovarian granulosa cells. The average optical density of PGRMC1 in the PCOS group was significantly increased in ovarian tissue and ovarian granulosa cells than that in the control group (both P<0.05). Compared with the control group, the PGRMC1 expression levels in ovarian granulosa cells and follicular fluid in the PCOS group were significantly up-regulated (P<0.001 and P<0.01, respectively). Compared with the scrambled group, the apoptotic rate of ovarian granulosa cells was significantly increased in the siPGRMC1 group (P<0.01), the mRNA expression levels of PGRMC1 and INSR in the siPGRMC1 group were significantly down-regulated (P<0.001 and P<0.05, respectively), and the mRNA expression levels of GLUT4, VLDLR and LDLR were significantly up-regulated (all P<0.05).
CONCLUSIONS
Serum level of PGRMC1 is increased in PCOS patients, and decreased after standard treatment. PGRMC1 could be used as molecular marker for diagnosis and prognosis evaluation of PCOS. PGRMC1 mainly localizes in ovarian granulosa cells and might play a key role in regulating ovarian granulosa cell apoptosis and glycolipid metabolism.
Child
;
Pregnancy
;
Humans
;
Female
;
Polycystic Ovary Syndrome
;
Apoptosis
;
Granulosa Cells
;
Lipid Metabolism
;
Membrane Proteins
;
Receptors, Progesterone
9.Curcumin Alleviates Hyperandrogenism and Promotes Follicular Proliferation in Polycystic Ovary Syndrome Rats: Insights on IRS1/PI3K/GLUT4 and PTEN Modulations.
Luo ZHENG ; Pei-Fang CHEN ; Wei-Chao DAI ; Zhi-Qun ZHENG ; Hui-Lan WANG
Chinese journal of integrative medicine 2022;28(12):1088-1095
OBJECTIVE:
To explore the effect of curcumin on the insulin receptor substrate 1 (IRS1)/phosphatidylinositol-3-kinase (PI3K)/endometrial expression of glucose 4 (GLUT4) signalling pathway and its regulator, phosphatase and tensin homolog (PTEN), in a rat model of polycystic ovarian syndrome (PCOS).
METHODS:
PCOS model was induced by letrozole intragastric administration. Sprague-Dawley rats were randomized into 4 groups according to a random number table: (1) control group; (2) PCOS group, which was subjected to PCOS and received vehicle; (3) curcumin group, which was subjected to PCOS and treated with curcumin (200 mg/kg for 2 weeks); and (4) curcumin+LY294002 group, which was subjected to PCOS, and treated with curcumin and LY294002 (a specific PI3K inhibitor). Serum hormone levels (17 β-estradiol, follicle stimulating hormone, luteinizing hormone, progesterone, and testosterone) were measured by enzyme linked immunosorbent assay, and insulin resistance (IR) was assessed using the homeostasis model assessment of IR. Ovarian tissues were stained with haematoxylin and eosin for pathological and apoptosis examination. Expression levels of key transcriptional regulators and downstream targets, including IRS1, PI3K, protein kinase B (AKT), GLUT4, and PTEN, were measured via reverse transcription polymerase chain reaction and Western blot, respectively.
RESULTS:
The PCOS group showed impaired ovarian morphology and function. Compared with the PCOS group, curcumin treatment exerted ovarioprotective effects, down-regulated serum testosterone, restored IR, inhibited inflammatory cell infiltration in ovarian tissues, decreased IRS1, PI3K, and AKT expressions, and up-regulated GLUT4 and PTEN expressions in PCOS rats (P<0.05 or P<0.01). In contrast, IRS1, PI3K, AKT, and PTEN expression levels were not significantly different between PCOS and curcumin+LY294002 groups (P>0.05).
CONCLUSION
The beneficial effects of curcumin on PCOS rats included the alteration of serum hormone levels and recovery of morphological ovarian lesions, in which, PTEN, a new target, may play a role in regulating the IRS1/PI3K/GLUT4 pathway.
Animals
;
Female
;
Humans
;
Rats
;
Cell Proliferation
;
Curcumin/therapeutic use*
;
Follicle Stimulating Hormone
;
Glucose
;
Hyperandrogenism
;
Insulin Receptor Substrate Proteins/metabolism*
;
Insulin Resistance
;
Ovarian Cysts
;
Ovarian Neoplasms
;
Phosphatidylinositol 3-Kinase/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Polycystic Ovary Syndrome/drug therapy*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rats, Sprague-Dawley
;
Testosterone
10.Metformin improves polycystic ovary syndrome and activates female germline stem cells in mice.
Chun-Hong WANG ; Qiang-Qiang WANG ; Ya-Shan SU ; Ya-Qun SUN ; Miao SUN ; Xin-Rui LIU ; Hui-Ming MA ; Guang-Yong LI ; Xiao-Li DU ; Rui HE
Acta Physiologica Sinica 2022;74(3):370-380
Polycystic ovary syndrome (PCOS) is a common disease caused by complex endocrine and metabolic abnormalities in women of childbearing age. Metformin is the most widely used oral hypoglycemic drug in clinic. In recent years, metformin has been used in the treatment of PCOS, but its mechanism is not clear. In this study, we aimed to investigate the effect of metformin on PCOS and its mechanism through PCOS mouse model. Female C57BL/6J mice aged 4-5 weeks were intragastrically given letrozole (1 mg/kg daily) combined with a high-fat diet (HFD) for 21 days to establish the PCOS model. After modeling, metformin (200 mg/kg daily) was intragastrically administered. One month later, the body weight and oral glucose tolerance test (OGTT) were measured. Hematoxylin eosin (H&E) staining was used to detect the pathological changes of ovary. The serum levels of anti-Mullerian hormone (AMH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), E2 and testosterone (T) were measured by ELISA. The expression of DDX4/MVH was detected by immunohistochemistry. DDX4/MVH and PCNA were co-labeled by immunofluorescence. The protein levels of DDX4/MVH, PCNA, cyclin D2, AMPK and mTOR were detected by Western blot. The results showed that after metformin treatment, the body weights of PCOS mice were gradually returned to normal, glucose tolerance was significantly improved, serum E2 levels were increased, while AMH, LH, T levels and LH/FSH ratio were decreased. Ovarian polycystic lesions were reduced with reduced atresia follicles. Furthermore, the number of proliferative female germline stem cells (FGSCs) and levels of proliferation related proteins (PCNA, cyclin D2) were significantly increased, and the p-mTOR and p-AMPK levels were markedly up-regulated. These results suggest that metformin treatment not only improves hyperandrogenemia, glucose intolerance and polycystic ovarian lesions in PCOS, but also activates the function of FGSCs. The underlying mechanism may be related to the phosphorylation of AMPK and mTOR. These findings provide new evidence to use metformin in the treatment of PCOS and follicular development disorder.
AMP-Activated Protein Kinases
;
Animals
;
Cyclin D2
;
Female
;
Follicle Stimulating Hormone/therapeutic use*
;
Humans
;
Luteinizing Hormone/therapeutic use*
;
Metformin/pharmacology*
;
Mice
;
Mice, Inbred C57BL
;
Oogonial Stem Cells/metabolism*
;
Ovarian Cysts/drug therapy*
;
Ovarian Neoplasms
;
Polycystic Ovary Syndrome/drug therapy*
;
Proliferating Cell Nuclear Antigen/therapeutic use*
;
TOR Serine-Threonine Kinases

Result Analysis
Print
Save
E-mail