1.Family Studies of a New Allele of the Bel subtype (c.803G>T, p.Gly268Val).
Xiao-Li MA ; Wen-An DONG ; He-Cai YANG ; Ming-Lu GENG ; Li-Ping WANG ; Yang YU
Journal of Experimental Hematology 2025;33(2):504-510
OBJECTIVE:
To analyze the Bel subtype gene mutation and its genetic mechanism in a family line.
METHODS:
ABO blood groups were identified by serologic tests. ABO genotyping was performed by polymerase chain reaction with sequence-specific primer (PCR-SSP). Sanger sequencing was performed on exons 1-7 of the ABO gene, the flanking intronic region, and exon 7 of the single strand of the gene confirmed the mutation site location. Missense3D software was used to predict the protein structure alteration caused by this mutation.
RESULTS:
Conventional serologic tests failed to detect erythrocyte B antigen in the proband and her three family members, and only trace amounts of B antigen expression could be detected by the absorption-dispersal test. DNA analysis showed that, on the basis of the normal ABO gene, there was a G>T substitution in the position of exon 7, position 803, which resulted in the change of amino acid 268 from Gly to Val. Further single-stranded sequencing analysis showed that the mutation site was located in the B gene.
CONCLUSION
In this family line, the proband, her father, her son, and her daughter all have reduced B type glycosyltransferase activity due to the new point mutation (c.803G>T) in exon 7 of the B gene, and the B antigen can only be detected by the absorption-dispersal method, and the point mutation can be stably inherited by offspring.
Point Mutation
;
Alleles
;
ABO Blood-Group System/genetics*
;
Exons
;
Introns
;
Genotype
;
Humans
;
Male
;
Female
;
Glycosyltransferases/genetics*
2.The Q181X Point Mutation in Nf1 Induces Cerebral Vessel Stenosis.
Chensi LIANG ; Lirong HUO ; Yan ZHU ; Zhichao YAO ; Xiaolong WU ; Jiantao LIANG
Neuroscience Bulletin 2023;39(5):813-816
3.Construction of point mutation rabbits using CRISPR/Cas9.
Kunning YAN ; Yong CHENG ; Jingyan LIANG ; Yiwen ZHA ; Ting ZHANG
Journal of Zhejiang University. Medical sciences 2021;50(2):229-238
To establish a rabbit model of proprotein convertase subtilisin/kexin type9 () point mutation with CRISPR/Cas9 gene editing technique. According to the PubMed gene protein data, the PCSK9 protein functional regions of human and rabbit were analyzed by Blast. The 386S (Ser) amino acid functional region of human gene was homologous to the 485S of rabbit gene. Three small guide RNAs and one single-stranded donor oligonucleotide were designed according to the 485S base substitution position and sequence analysis of rabbit gene. The synthetic small guide RNAs, Cas9 mRNA and single-stranded donor oligonucleotide were co-injected into the cytoplasm of rabbit fertilized eggs and the embryos were transferred into the pregnant rabbits. PCR, TA cloning and off-target analysis were performed on the F0 rabbits to identify whether the PCSK9 mutation was successful. Fifteen F0 rabbits were obtained. The sequencing results showed that one of them was PCSK9 point mutation homozygote and two of them were PCSK9 point mutation heterozygotes, and the mutation could be stably inherited. The rabbit model of PCSK9 point mutation was successfully constructed by CRISPR/Cas9 technique, which provides an animal model for exploring the molecular mechanism of impaired PCSK9 function and developing reliable and effective diagnosis and treatment measures.
Animals
;
CRISPR-Cas Systems/genetics*
;
Mutation
;
Point Mutation
;
Proprotein Convertase 9/metabolism*
;
Rabbits
4.Concordant point mutation of ETS-related gene (ERG) in tumor tissues from a synchronous multiple primary lung cancer: A case report.
Journal of Peking University(Health Sciences) 2020;52(5):971-974
The rearrangement of the gene encoding the transcription factor ETS-related gene (ERG) is thought to play a key role in the development of prostate cancer. However, the studies on the ERG mutations have been rarely reported in non-small cell lung carcinoma (NSCLC). Here, we reported genetic features regarding a case of a 68-year-old male patient who presented the primary synchronous multiple tumor lesions in the separated lungs. The patient was hospitalized due to the presence of tumor lesions at the right and left lungs revealed by a chest computerized tomography (CT) scan. After conducting lobectomies at the both lungs, the tumor nodules were all removed, and the histological analysis suggested adenocarcinoma at the both tumor lesions. The patient was diagnosed with synchronous multiple primary lung cancer (SMPLC) based on Martini-Melamed criteria and American College of Chest Physicians practice guidelines. An exome analysis of 315 genes in the two tumor lesions and a non-tumor lesion was conducted by using Illumina Nextseq500 platform from each tumor region to decipher a potential evolutional progress of SMPLC. Single or pair-end reads were first mapped to a human genome reference and filtered based on the mapping quality score. The read depth was ≥ 1 000× and the depth of coverage was 95%. The data revealed a discordant epidermal growth factor receptor (EGFR) from the separate lungs; additionally, a high frequency of point mutation on exon 9 H310P of the ERG gene was detected at the both sites of the tumor lesions. This case showed that a potential role of the molecular features analysis from each tumor lesion might contribute to the understanding of the evolutional development of SMPLC. This study suggests that the same environment may contribute certain gene(s) mutations in the same sites in the early stages of polyclonal tumor origins; meanwhile the extensive studies on these genes may help us understand the evolution and progress of tumor clones.
Adenocarcinoma
;
Aged
;
Carcinoma, Non-Small-Cell Lung
;
Humans
;
Lung Neoplasms/genetics*
;
Male
;
Neoplasms, Multiple Primary/genetics*
;
Point Mutation
;
Transcriptional Regulator ERG
5.Homologous modeling and binding ability analysis of Spike protein after point mutation of severe acute respiratory syndrome coronavirus 2 to receptor proteins and potential antiviral drugs.
Ze CAO ; Le Tong WANG ; Zhen Ming LIU
Journal of Peking University(Health Sciences) 2020;53(1):150-158
OBJECTIVE:
To explore the natural mutations in Spike protein (S protein) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the changes of affinity between virus and associated receptors or drug molecules before and after the mutation based on whole length sequencing results.
METHODS:
In the study, the bioinformatics analysis of all the published sequences of SARS-CoV-2 was conducted and thus the high frequency mutation sites were affirmed. Taking advantages of PolyPhen-2, the functional influence of each mutation in S protein was prospected. The 3D homologous modelling was performed by SWISS-MODEL to establish mutated S protein structural model, in which the protein-docking was then implemented with angiotensin-converting enzyme 2 (ACE2), dipeptidyl peptidase-4 (DPP4) and aminopeptidase N (APN) by ZDOCK, and the combining capacity of each mutated S protein evaluated by FiPD. Finally, the binding ability between mutated S proteins and anti-virus drugs were prospected and evaluated through AutoDock-Chimera 1.14.
RESULTS:
The mutations in specific region of S protein had greater tendency to destroy the S protein function by analysis of mutated S protein structure. Protein-receptor docking analysis between naturally mutated S protein and host receptors showed that, in the case of spontaneous mutation, the binding ability of S protein to ACE2 tended to be weakened, while the binding ability of DPP4 tended to be enhanced, and there was no significant change in the binding ability of APN. According to the computational simulation results of affinity binding between small molecular drugs and S protein, the affinity of aplaviroc with S protein was significantly higher than that of other small molecule drug candidates.
CONCLUSION
The region from 400-1 100 amino acid in S protein of SARS-CoV-2 is the mutation sensitive part during natural state, which was more potential to mutate than other part in S protein during natural state. The mutated SARS-CoV-2 might tend to target human cells with DPP4 as a new receptor rather than keep ACE2 as its unique receptor for human infection. At the same time, aplaviroc, which was used for the treatment of human immunodeficiency virus (HIV) infection, may become a new promising treatment for SARS-CoV-2 and could be a potential choice for the development of SARS-CoV-2 drugs.
Antiviral Agents
;
COVID-19
;
Humans
;
Peptidyl-Dipeptidase A/genetics*
;
Point Mutation
;
SARS-CoV-2
;
Spike Glycoprotein, Coronavirus/genetics*
6.Eradication Therapy for Helicobacter pylori with Diagnostic Test for Clarithromycin Resistance
The Korean Journal of Helicobacter and Upper Gastrointestinal Research 2019;19(4):225-230
Addressing the increasing antibiotic resistance, including clarithromycin resistance, which affects Helicobacter pylori (H. pylori) eradication therapy, is a challenge for clinicians. Antibiotic resistance is the main reason for H. pylori eradication failure and the resistance rate for clarithromycin may drastically increase, up to 38.5%, due to 23S ribosomal RNA point mutations. Therefore, the standard triple regimen is no longer suitable as the first-line treatment in most regions. However, there is a growing interest in personalized care for patients. Increased eradication rates of tailored therapy based on antibiotic susceptibility have been reported using nucleic acid-based techniques for clarithromycin resistance with a focus on the first-line eradication therapy of H. pylori infection. Herein, we discuss the eradication therapy for H. pylori, with a diagnostic test and appropriate treatment for clarithromycin resistance.
Clarithromycin
;
Diagnostic Tests, Routine
;
Drug Resistance
;
Drug Resistance, Microbial
;
Helicobacter pylori
;
Helicobacter
;
Humans
;
Point Mutation
;
RNA, Ribosomal, 23S
7.A benign lesion similar to breast cancer.
Yan ZHAO ; Wen-Chao WANG ; Ting LU
Chinese Medical Journal 2019;132(2):250-252
8.De novo mutations in COL4A5 identified by whole exome sequencing in 2 girls with Alport syndrome in Korea
Kyoung Hee HAN ; Jong Eun PARK ; Chang Seok KI
Korean Journal of Pediatrics 2019;62(5):193-197
Alport syndrome (ATS) is an inherited glomerular disease caused by mutations in one of the type IV collagen novel chains (α3, α4, and α5). ATS is characterized by persistent microscopic hematuria that starts during infancy, eventually leading to either progressive nephritis or end-stage renal disease. There are 3 known genetic forms of ATS, namely X-linked ATS, autosomal recessive ATS, and autosomal dominant ATS. About 80% of patients with ATS have X-linked ATS, which is caused by mutations in the type IV collagen α5 chain gene, COL4A5. Although an 80% mutation detection rate is observed in men with X-linked ATS, some difficulties do exist in the genetic diagnosis of ATS. Most mutations are point mutations without hotspots in the COL4A3, COL4A4, and COL4A5 genes. Further, there are insufficient data on the detection of COL4A3 and COL4A4 mutations for their comparison between patients with autosomal recessive or dominant ATS. Therefore, diagnosis of ATS in female patients with no apparent family history can be challenging. Therefore, in this study, we used whole-exome sequencing (WES) to identify mutations in type IV collagen in 2 girls with glomerular basement membrane structural changes suspected to be associated with ATS; these patients had no relevant family history. Our results revealed de novo c.4688G>A (p.Arg1563Gln) and c.2714G>A (p.Gly905Asp) mutations in COL4A5. Therefore, we suggest that WES is an effective approach to obtain genetic information in ATS, particularly in female patients without a relevant family history, to detect unexpected DNA variations.
Child
;
Collagen Type IV
;
Diagnosis
;
DNA
;
Exome
;
Female
;
Glomerular Basement Membrane
;
Hematuria
;
Humans
;
Kidney Failure, Chronic
;
Korea
;
Male
;
Nephritis
;
Nephritis, Hereditary
;
Point Mutation
9.Novel DPY19L2 variants in globozoospermic patients and the overcoming this male infertility.
Yong-Liang SHANG ; Fu-Xi ZHU ; Jie YAN ; Liang CHEN ; Wen-Hao TANG ; Sai XIAO ; Wei-Ke MO ; Zhi-Guo ZHANG ; Xiao-Jin HE ; Jie QIAO ; Yun-Xia CAO ; Wei LI
Asian Journal of Andrology 2019;21(2):183-189
Globozoospermia has been reported to be a rare but severe causation of male infertility, which results from the failure of acrosome biogenesis and sperm head shaping. Variants of dpy-19-like 2 (DPY19L2) are highly related to globozoospermia, but related investigations have been mainly performed in patients from Western countries. Here, we performed a screening of DPY19L2 variants in a cohort of Chinese globozoospermic patients and found that five of nine patients carried DPY19L2 deletions and the other four patients contained novel DPY19L2 point mutations, as revealed by whole-exome sequencing. Patient 3 (P3) contained a heterozygous variant (c.2126+5G>A), P6 contained a homozygous nonsense mutation (c.1720C>T, p.Arg574*), P8 contained compound heterozygous variants (c.1182-1184delATC, p.Leu394_Ser395delinsPhe; c.368A>T, p.His123Arg), and P9 contained a heterozygous variant (c.1182-1184delATCTT, frameshift). We also reported intracytoplasmic sperm injection (ICSI) outcomes in the related patients, finding that ICSI followed by assisted oocyte activation (AOA) with calcium ionophore achieved high rates of live births. In summary, the infertility of these patients results from DPY19L2 dysfunction and can be treated by ICSI together with AOA.
Acrosome
;
Adult
;
China
;
Codon, Nonsense
;
Female
;
Humans
;
Male
;
Membrane Proteins/genetics*
;
Point Mutation
;
Pregnancy
;
Pregnancy Outcome
;
Pregnancy Rate
;
Sequence Deletion
;
Sperm Head
;
Sperm Injections, Intracytoplasmic
;
Teratozoospermia/genetics*
;
Exome Sequencing
10.Role of Androgen Receptor in Prostate Cancer: A Review
Kazutoshi FUJITA ; Norio NONOMURA
The World Journal of Men's Health 2019;37(3):288-295
Androgen receptor (AR) is a steroid receptor transcriptional factor for testosterone and dihydrotestosterone consisting of four main domains, the N-terminal domain, DNA-binding domain, hinge region, and ligand-binding domain. AR plays pivotal roles in prostate cancer, especially castration-resistant prostate cancer (CRPC). Androgen deprivation therapy can suppress hormone-naïve prostate cancer, but prostate cancer changes AR and adapts to survive under castration levels of androgen. These mechanisms include AR point mutations, AR overexpression, changes of androgen biosynthesis, constitutively active AR splice variants without ligand binding, and changes of androgen cofactors. Studies of AR in CRPC revealed that AR was still active in CRPC, and it remains as a potential target to treat CRPC. Enzalutamide is a second-generation antiandrogen effective in patients with CRPC before and after taxane-based chemotherapy. However, CRPC is still incurable and can develop drug resistance. Understanding the mechanisms of this resistance can enable new-generation therapies for CRPC. Several promising new AR-targeted therapies have been developed. Apalutamide is a new Food and Drug Administration-approved androgen agonist binding to the ligand-binding domain, and clinical trials of other new AR-targeted agents binding to the ligand-binding domain or N-terminal domain are underway. This review focuses on the functions of AR in prostate cancer and the development of CRPC and promising new agents against CRPC.
Androgen Antagonists
;
Castration
;
Dihydrotestosterone
;
Drug Resistance
;
Drug Therapy
;
Humans
;
Point Mutation
;
Prostate
;
Prostatic Neoplasms
;
Receptors, Androgen
;
Receptors, Steroid
;
Testosterone

Result Analysis
Print
Save
E-mail