1.The regulatory function of elevated interleukin 36γ to CD8+ T cell function in secondary fungal pneumonia patients with chronic obstructive pulmonary diseases.
Xiaoshan CUI ; Yinglan LI ; Tongxiu ZHAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):637-643
Objectives To investigate interleukin 36γ (IL-36γ) expression, and analyze the influence of IL-36γ to CD8+ T cell activity in chronic obstructive pulmonary diseases (COPD) patients with secondary fungal pneumonia. Methods Peripheral blood was collected from 47 COPD patients, 39 COPD patients with secondary fungal pneumonia, and 20 controls. Bronchial alveolar lavage fluid (BALF) was isolated from 27 COPD patients with secondary fungal pneumonia. CD8+ T cells were purified. The levels of four IL-36 isoforms in plasma and BALF were measured by enzyme linked immunosorbent assay (ELISA). CD8+ T cells were stimulated with recombinant human IL-36γ. The levels of interferon γ(IFN-γ), tumor necrosis factor α(TNF-α), perforin and granzyme B in the cultured supernatants were measured by ELISA. Recombinant human IL-36γ-stimulated CD8+ T cells were co-cultured with NCI-H1882 cells in either direct cell-to-cell contact or TranswellTM manner. The levels of IFN-γ, TNF-α, and lactate dehydrogenase in the cultured supernatants were assessed. The percentage of target cell death was calculated. Results Plasma IL-36α, IL-36β, and IL-36γ levels were significantly elevated in both COPD group and COPD with secondary fungal pneumonia group compared with those in control group. However, only plasma IL-36γ level was higher in COPD with secondary fungal pneumonia group than that in COPD group [(200.11±99.95)pg/mL vs (53.03±87.18)pg/mL, P=0.023]. There was no remarkable difference in plasma IL-36 receptor antagonist level among three groups. IL-36γ level in BALF from infectious site was higher than that from non-infectious site in COPD with secondary fungal pneumonia group [(305.82±59.60)pg/mL vs (251.93±76.01)pg/mL, P=0.011]. IL-36γ stimulation enhanced IFN-γ, TNF-α, perforin and granzyme B secreted by CD8+ T cells. When IL-36γ-stimulated CD8+ T cells were directly mixed with NCI-H1882 cells for co-culture, the percentage of cell death was increased [(16.06±3.67)% vs (11.47±2.36)%, P=0.002]. When using TranswellTM plate for non-contact co-culture, IL-36γ-stimulated CD8+ T cell-mediated death of NCI-H1882 cells showed no significant difference compared to that without stimulation [(4.77±0.78)% vs (4.99±0.92)%, P=0.554]. Conclusion IL-36γ level in plasma and infectious site is elevated in COPD patients with secondary fungal pneumonia, which enhances the cytotoxicity of CD8+ T cells in peripheral blood and infectious microenviroment.
Humans
;
Pulmonary Disease, Chronic Obstructive/complications*
;
CD8-Positive T-Lymphocytes/metabolism*
;
Male
;
Female
;
Aged
;
Middle Aged
;
Interferon-gamma/metabolism*
;
Interleukin-1/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Lung Diseases, Fungal/complications*
;
Bronchoalveolar Lavage Fluid/chemistry*
;
Perforin/metabolism*
;
Pneumonia/immunology*
;
Granzymes/metabolism*
2.Intracellular concentration of ADA2 is a marker for monocyte differentiation and activation.
Liang DONG ; Bingtai LU ; Wenwen LUO ; Xiaoqiong GU ; Chengxiang WU ; Luca TROTTA ; Mikko SEPPANEN ; Yuxia ZHANG ; Andrey V ZAVIALOV
Frontiers of Medicine 2025;19(2):359-375
Adenosine, a critical molecule regulating cellular function both inside and outside cells, is controlled by two human adenosine deaminases: ADA1 and ADA2. While ADA1 primarily resides in the cytoplasm, ADA2 can be transported to lysosomes within cells or secreted outside the cell. Patients with ADA2 deficiency (DADA2) often suffer from systemic vasculitis due to elevated levels of TNF-α in their blood. Monocytes from DADA2 patients exhibit excessive TNF-α secretion and differentiate into pro-inflammatory M1-type macrophages. Our findings demonstrate that ADA2 localizes to endolysosomes within macrophages, and its intracellular concentration decreases in cells secreting TNF-α. This suggests that ADA2 may function as a lysosomal adenosine deaminase, regulating TNF-α expression by the cells. Interestingly, pneumonia patients exhibit higher ADA2 concentrations in their bronchoalveolar lavage (BAL), correlating with elevated pro-inflammatory cytokine levels. Conversely, cord blood has low ADA2 levels, creating a more immunosuppressive environment. Additionally, secreted ADA2 can bind to apoptotic cells, activating immune cells by reducing extracellular adenosine levels. These findings imply that ADA2 release from monocytes during inflammation, triggered by growth factors, may be crucial for cell activation. Targeting intracellular and extracellular ADA2 activities could pave the way for novel therapies in inflammatory and autoimmune disorders.
Humans
;
Adenosine Deaminase/deficiency*
;
Monocytes/cytology*
;
Cell Differentiation
;
Intercellular Signaling Peptides and Proteins/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Biomarkers/metabolism*
;
Macrophages/metabolism*
;
Pneumonia/metabolism*
3.Distribution of pathogens in patients with ventilator-associated pneumonia and their association with Dectin-1/Syk signaling pathway.
Huili GUO ; Qinghua LIN ; Ruirui ZHU ; Lianzhen QI
Chinese Critical Care Medicine 2025;37(2):128-132
OBJECTIVE:
To analyze the pathogens distribution in patients with ventilator-associated pneumonia (VAP), and their association with anti-β-glucan receptor-1 (Dectin-1)/spleen tyrosine kinase (Syk) signaling pathway, and to provide scientific basis for formulating more effective treatment strategies and preventive measures.
METHODS:
A prospective study was conducted. 160 patients with VAP admitted to the department of critical care medicine of Xingtai People's Hospital from January 2021 to March 2023 were enrolled. The respiratory secretions of patients were collected for Candida colonization analysis, and then the bacteria in the respiratory secretions were identified by automatic microbial identification instrument. The expression levels of Dectin-1 and Syk in peripheral blood mononuclear cells were detected by fluorescent immunopolymerase chain reaction. Clinical pulmonary infection score (CPIS) was performed based on imaging, clinical and microbiological criteria. The basic data, pathogen distribution, Dectin-1 and Syk expression levels and CPIS score of the two groups were compared. Spearman test was used to analyze the correlation between the expression levels of Dectin-1 and Syk and respiratory Candida colonization and CPIS score.
RESULTS:
160 VAP patients, 97 were Candida colonized (colonized group) and 63 were not (non-colonized group). There were significantly differences in gender (males: 57.73% vs. 41.27%, P = 0.042) and age (years: 57.98±12.46 vs. 62.09±10.61, P = 0.029) between the colonized group and the non-colonized group, while there were no significantly differences in the data of duration of mechanical ventilation, underlying diseases and primary diseases. The distribution of pathogenic bacteria showed that the infection rate of Staphylococcus aureus in the colonized group was significantly higher than that in the non-colonized group (24.74% vs. 7.94%, P < 0.05), and there was no significantly difference in the infection rate of other G-positive and G-negative bacteria between the two groups. The CPIS score in the colonized group was significantly higher than that in the non-colonized group (8.73±0.43 vs. 7.31±0.39, P < 0.01), and the expression levels of Dectin-1 and Syk in peripheral blood mononuclear cells were significantly higher than those in the non-colonized group (Dectin-1/U6: 0.86±0.22 vs. 0.47±0.16, Syk/U6: 0.77±0.18 vs. 0.42±0.11, both P < 0.01). The expression levels of Dectin-1 and Syk in peripheral blood mononuclear cells of VAP patients were significantly positively correlated with the colonization of respiratory Candida (r values were 0.754 and 0.631, respectively, both P < 0.05), and were significantly positively correlated with CPIS score (r values were 0.594 and 0.618, respectively, both P < 0.05).
CONCLUSION
The proportion of Staphylococcus aureus in VAP patients with respiratory Candida colonization is higher, and Dectin-1/Syk signaling pathway is significantly positively correlated with respiratory Candida colonization and CPIS score.
Humans
;
Syk Kinase
;
Lectins, C-Type/metabolism*
;
Signal Transduction
;
Pneumonia, Ventilator-Associated/metabolism*
;
Prospective Studies
;
Male
;
Female
;
Middle Aged
;
Candida
;
Aged
4.Interaction of α-amylase and inflammatory response in patients with ventilator-associated pneumonia and their prognostic value.
Yexing LIU ; Yanzeng PENG ; Yuding HU ; Chao LIU
Chinese Critical Care Medicine 2025;37(6):535-541
OBJECTIVE:
To investigate the interaction between α-amylase (α-AMS) and inflammatory response in patients with ventilator-associated pneumonia (VAP) and their predictive value for prognosis.
METHODS:
A prospective cohort study was conducted. Patients with mechanical ventilation who were treated in the intensive care unit (ICU) of the Second Hospital of Hebei Medical University from June 2020 to June 2023 were enrolled, and the patients were divided into VAP group and non-VAP group according to whether VAP occurred. VAP patients were stratified into mild [acute physiology and chronic health evaluation II (APACHE II) < 10 scores], moderate (APACHE II were 10-20 scores), and severe (APACHE II > 20 scores) groups based on the APACHE II. All patients were followed up for 28 days. In addition, healthy subjects who underwent health examination in our hospital at the same time were selected as the healthy control group. Baseline data including gender, age, mechanical ventilation mode, mechanical ventilation time, underlying diseases, drug use, and laboratory test indicators were collected. The serum levels of α-AMS, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), C-reactive protein (CRP) and other inflammatory factors were analyzed and compared. Pearson correlation analysis was performed to analyze the correlation between serum α-AMS and inflammatory factors. Logistic regression was used to analyze the influencing factors of poor prognosis in patients with VAP. The receiver operator characteristic curve (ROC curve) was plotted to evaluate the predictive value of α-AMS on the poor prognosis of patients with VAP.
RESULTS:
A total of 100 mechanically ventilated patients were enrolled, including 60 cases in the VAP group and 40 cases in the non-VAP group. Among the patients with VAP, there were 24 cases in the mild group, 20 cases in the moderate group, and 16 cases in the severe group. A total of 44 patients survived at 28 days, while 16 died. Additionally, 100 healthy individuals were included as the healthy control group. Serum levels of α-AMS, IL-6, TNF-α and CRP in the VAP group were significantly higher than those in the non-VAP group and the healthy control group, while the levels of α-AMS, IL-6, TNF-α and CRP in the non-VAP group were significantly higher than those in the healthy control group. There were statistically significant differences in serum α-AMS, IL-6, TNF-α, CRP levels and APACHE II scores among VAP patients with different disease severities, and the levels of the above indicators in the severe group were significantly higher than those in the moderate group and mild group, and the levels of the above indicators in the moderate VAP group were significantly higher than those in the mild group. Pearson correlation analysis showed that serum α-AMS was positively correlated with IL-6, TNF-α, CRP, and APACHE II scores (r values were 0.404, 0.392 and 0.493, 0.493, all P < 0.01). Univariate analysis showed that age, mechanical ventilation, diabetes mellitus, ventilation time, ventilation position, prophylactic use of antimicrobial drugs, and serum α-AMS, IL-6, TNF-α, CRP, and APACHE II scores were correlated with the prognosis of VAP patients (all P < 0.05). Multivariate Logistic regression analysis identified age [odds ratio (OR) = 1.340, 95% confidence interval (95%CI) was 1.119-1.605], tracheostomy (OR = 3.050, 95%CI was 1.016-9.157), diabetes mellitus (OR = 1.379, 95%CI was 1.102-1.724), and ventilation time ≥ 7 days (OR = 2.557, 95%CI was 1.163-5.623) and serum α-AMS (OR = 1.428, 95%CI was 1.098-1.856), IL-6 (OR = 1.543, 95%CI was 1.005-2.371), TNF-α (OR = 2.228, 95%CI was 1.107-4.485), CRP (OR = 1.252, 95%CI was 1.131-1.387), APACHE II scores (OR = 1.422, 95%CI was 1.033-1.957) were independent influencing factors for the 28-day prognosis of patients with VAP (all P < 0.05). ROC curve analysis demonstrated that serum α-AMS, IL-6, TNF-α and CRP exhibited significant predictive performance on the prognosis of patients with VAP. The best cut-off value for α-AMS had a sensitivity of 81.3%, specificity of 75.0%, and an area under the ROC curve (AUC) of 0.791, which was significantly higher than those of inflammatory markers IL-6, TNF-α, and CRP (P < 0.05). The combined parameter diagnostic performance was significantly better than those of individual parameters (P < 0.05), with the highest diagnostic performance when combined, corresponding to an AUC of 0.868 (95%CI was 0.798-0.938), sensitivity of 87.5%, and specificity of 79.5%.
CONCLUSIONS
VAP in mechanically ventilated patients can lead to an increase in the levels of peripheral blood α-AMS and inflammatory factors, and there is an interaction between α-AMS and inflammatory markers in severe VAP patients. These markers are closely related to the severity of the disease and prognosis and have significant implications for predicting patient outcomes.
Humans
;
Pneumonia, Ventilator-Associated/diagnosis*
;
Prognosis
;
Prospective Studies
;
Respiration, Artificial
;
alpha-Amylases/blood*
;
Interleukin-6/blood*
;
Male
;
Female
;
C-Reactive Protein/metabolism*
;
APACHE
;
Inflammation
;
Middle Aged
;
Intensive Care Units
;
Tumor Necrosis Factor-alpha/blood*
;
Aged
5.Total alkaloids from Thesium chinense inhibit lipopolysaccharide-induced respiratory inflammation by modulating Nrf2/NF-κB/NLRP3 signaling pathway.
Guohui LI ; Yueqin GUAN ; Lintao XU ; Guangcheng PENG ; Qingtong HAN ; Tian WANG ; Zhenpeng XU ; Xuesen WEN ; Hongxiang LOU ; Tao SHEN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(4):421-430
Inflammation plays a pivotal role in the etiology and progression of various diseases. In traditional Chinese medicine, the whole plants of Thesium chinense Turcz. and its preparations (e.g. Bairui Granules) have been employed to manage inflammatory conditions. While flavonoids were previously considered the primary anti-inflammatory components, other potentially active constituents have been largely overlooked and not thoroughly investigated. This study presents a novel finding that the total alkaloids of T. chinense (BC-Alk) are potent active substances underlying the traditional and clinical applications of T. chinense and Bairui Granules as anti-inflammatory agents. UPLC-MS/MS analysis identified the composition of BC-Alk as quinolizidine alkaloids. The anti-inflammatory efficacy of BC-Alk was evaluated using a lipopolysaccharide (LPS)-induced lung inflammation model in mice. Results demonstrated that BC-Alk significantly mitigated LPS-induced lung inflammation, attenuated the overproduction of IL-1β and the overproduction of inflammatory factors (TNF-α), and ameliorated lung tissue hyperplasia in mice in vivo. Mechanistic studies in vitro revealed that BC-Alk upregulated the expression of Nrf2 and its downstream proteins NQO1 and glutamate-cystine ligase and modifier subunit (GCLM), inhibited NF-κB phosphorylation, and suppressed NLRP3 activation. Collectively, these findings indicate that BC-Alk exerts potent inhibitory effects against lung inflammation by modulating Nrf2, NF-κB, and NLRP3 pathways. This study provides new insights into the anti-inflammatory constituents of T. chinense and Bairui Granules.
Animals
;
Lipopolysaccharides/adverse effects*
;
Alkaloids/pharmacology*
;
NF-kappa B/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Mice
;
Signal Transduction/drug effects*
;
Anti-Inflammatory Agents/pharmacology*
;
Male
;
Mice, Inbred C57BL
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Pneumonia/genetics*
6.Protective effect of Streptococcus salivarius K12 against Mycoplasma pneumoniae infection in mice.
Xiaoling SU ; Daoyong LIAO ; Chao LI ; Li CHEN ; Jingyun WANG ; Tian GAN ; Haodang LUO ; Ning WU ; Jun HE
Journal of Southern Medical University 2024;44(12):2300-2307
OBJECTIVES:
To investigate the protective effect of the probiotic bacterium Streptococcus salivarius K12 (K12) against Mycoplasma pneumoniae (Mp) infection in mice.
METHODS:
Forty male BALB/c mice were randomized into normal control group, K12 treatment group, Mp infection group, and K12 pretreatment prior to Mp infection group. The probiotic K12 was administered daily by gavage for 14 days before Mp infection induced by intranasal instillation of Mp. Three days after Mp infection, the mice were euthanized for analysis of bronchoalveolar lavage fluid (BALF) cell counts and serum levels of secretory immunoglobulin A (sIgA), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). RT-qPCR was performed to detect the P1 and community-acquired respiratory distress syndrome ( CARDS ) toxin of Mp in the lung tissues and the mRNA expressions of TNF-α, IL-6, chemokine 1 (CXCL1), matrix metalloproteinase 9 (MMP9), mucin 5ac (MUC5ac), collagen 3a1 (Col3a1), Toll-like receptor 2 (TLR2) and TLR4; the protein expressions of TLR2 and TLR4 in the lung tissue were detected using Western blotting. Pathological changes in the lung tissue and airway remodeling were examined with HE staining and AB/PAS staining.
RESULTS:
Compared with the Mp-infected mice with PBS treatment, the infected mice with K12 treatment showed significantly lowered mRNA levels of P1 and CARDS in the lung tissue and reduced white blood cell counts in the BALF (P<0.05). In spite of the absence of significant differences in serum levels of inflammatory factors between the two groups, the mRNA expressions of TNF‑α, IL-6, CXCL1, MMP9, MUC5ac and COL3A1 and the mRNA and protein levels of TLR2 and TLR4 in the lung tissues were significantly lower in K12-treated mice, in which AB/PAS staining showed obviously decreased mucus secretion.
CONCLUSIONS
K12 pretreatment can effectively reduce pulmonary inflammatory responses, improve airway remodeling and alleviate lung injury in Mp-infected mice.
Animals
;
Mice
;
Pneumonia, Mycoplasma/metabolism*
;
Mice, Inbred BALB C
;
Toll-Like Receptor 2/metabolism*
;
Mycoplasma pneumoniae
;
Male
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Lung/microbiology*
;
Toll-Like Receptor 4/metabolism*
;
Streptococcus salivarius
;
Probiotics/administration & dosage*
;
Bronchoalveolar Lavage Fluid
;
Matrix Metalloproteinase 9/metabolism*
;
Mucin 5AC/metabolism*
;
Chemokine CXCL1/metabolism*
;
Immunoglobulin A, Secretory/metabolism*
;
Bacterial Toxins
;
Bacterial Proteins
7.Dendrobium nobile protects against ovalbumin-induced allergic rhinitis by regulating intestinal flora and suppressing lung inflammation.
Fei-Peng DUAN ; Yi-Sheng LI ; Tian-Yong HU ; Xin-Quan PAN ; Fang MA ; Yue FENG ; Shu-Qi QIU ; Yi-Qing ZHENG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(6):443-457
Antibiotic exposure-induced dysbiosis of the intestinal flora increases the risk of developing allergic rhinitis. Hence, regulating the balance of intestinal flora may be useful for preventing and treating allergic rhinitis. However, the underlying mechanism is unclear. Dendrobium nobile (Shihu) exhibits anti-inflammatory and immune activities. Hence, in this study, we investigated the mechanism via which Shihu may improve allergic rhinitis. Mouse models of allergic rhinitis with intestinal flora dysbiosis (Model-D, antibiotics induce intestinal flora dysbiosis with ovalbumin-induced allergy) and normal intestinal flora with allergic rhinitis (Model-N, ovalbumin-induced allergy) were established. The effect of Shihu on intestinal flora and inflammation caused during allergic rhinitis were analyzed. Allergic symptoms, infiltration of hematoxylin and eosin in the lungs and nose, and the release of various factors [interleukin (IL)-2, IL-4, IFN-γ, IL-6, IL-10, and IL-17] in the lungs were evaluated. The results indicate that intestinal flora dysbiosis exacerbated lung and nose inflammation in allergic rhinitis. However, treatment with the Shihu extract effectively reversed these symptoms. Besides, the Shihu extract inhibited the PI3K/AKT/mTOR pathway and increased the level of Forkhead box protein in the lungs. Additionally, the Shihu extract reversed intestinal flora dysbiosis at the phylum and genus levels and improved regulator T cell differentiation. Furthermore, in the Model-D group, the Shihu extract inhibited the decrease in the diversity and abundance of the intestinal flora. Screening was performed to determine which intestinal flora was positively correlated with Treg differentiation using Spearman's correlation analysis. In conclusion, we showed that Shihu extract restored the balance in intestinal flora and ameliorated inflammation in the lungs of allergic rhinitis mice and predicted a therapeutic new approach using Traditional Chinese Medicine to improve allergic rhinitis.
Animals
;
Cytokines/metabolism*
;
Dendrobium
;
Disease Models, Animal
;
Drugs, Chinese Herbal/pharmacology*
;
Dysbiosis/drug therapy*
;
Gastrointestinal Microbiome
;
Inflammation/drug therapy*
;
Mice
;
Mice, Inbred BALB C
;
Ovalbumin
;
Phosphatidylinositol 3-Kinases
;
Pneumonia
;
Rhinitis, Allergic/metabolism*
8.Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids.
Bing ZHAO ; Chao NI ; Ran GAO ; Yuyan WANG ; Li YANG ; Jinsong WEI ; Ting LV ; Jianqing LIANG ; Qisheng ZHANG ; Wei XU ; Youhua XIE ; Xiaoyue WANG ; Zhenghong YUAN ; Junbo LIANG ; Rong ZHANG ; Xinhua LIN
Protein & Cell 2020;11(10):771-775
Betacoronavirus
;
isolation & purification
;
pathogenicity
;
Bile Acids and Salts
;
metabolism
;
Bile Ducts, Intrahepatic
;
pathology
;
virology
;
Cell Culture Techniques
;
Coronavirus Infections
;
complications
;
pathology
;
Cytokine Release Syndrome
;
etiology
;
physiopathology
;
Cytopathogenic Effect, Viral
;
Epithelial Cells
;
enzymology
;
pathology
;
virology
;
Humans
;
Hyperbilirubinemia
;
etiology
;
Liver
;
pathology
;
Organoids
;
pathology
;
virology
;
Pandemics
;
Peptidyl-Dipeptidase A
;
analysis
;
Pneumonia, Viral
;
complications
;
pathology
;
Receptors, Virus
;
analysis
;
Serine Endopeptidases
;
analysis
;
Viral Load
9.In Silico Screening of Potential Spike Glycoprotein Inhibitors of SARS-CoV-2 with Drug Repurposing Strategy.
Tian-Zi WEI ; Hao WANG ; Xue-Qing WU ; Yi LU ; Sheng-Hui GUAN ; Feng-Quan DONG ; Chen-le DONG ; Gu-Li ZHU ; Yu-Zhou BAO ; Jian ZHANG ; Guan-Yu WANG ; Hai-Ying LI
Chinese journal of integrative medicine 2020;26(9):663-669
OBJECTIVE:
To select potential molecules that can target viral spike proteins, which may potentially interrupt the interaction between the human angiotension-converting enzyme 2 (ACE2) receptor and viral spike protein by virtual screening.
METHODS:
The three-dimensional (3D)-coordinate file of the receptor-binding domain (RBD)-ACE2 complex for searching a suitable docking pocket was firstly downloaded and prepared. Secondly, approximately 15,000 molecular candidates were prepared, including US Food and Drug Administration (FDA)-approved drugs from DrugBank and natural compounds from Traditional Chinese Medicine Systems Pharmacology (TCMSP), for the docking process. Then, virtual screening was performed and the binding energy in Autodock Vina was calculated. Finally, the top 20 molecules with high binding energy and their Chinese medicine (CM) herb sources were listed in this paper.
RESULTS:
It was found that digitoxin, a cardiac glycoside in DrugBank and bisindigotin in TCMSP had the highest docking scores. Interestingly, two of the CM herbs containing the natural compounds that had relatively high binding scores, Forsythiae fructus and Isatidis radix, are components of Lianhua Qingwen (), a CM formula reportedly exerting activity against severe acute respiratory syndrome (SARS)-Cov-2. Moreover, raltegravir, an HIV integrase inhibitor, was found to have a relatively high binding score.
CONCLUSIONS
A class of compounds, which are from FDA-approved drugs and CM natural compounds, that had high binding energy with RBD of the viral spike protein. Our work provides potential candidates for other researchers to identify inhibitors to prevent SARS-CoV-2 infection, and highlights the importance of CM and integrative application of CM and Western medicine on treating COVID-19.
China
;
Computer Simulation
;
Coronavirus Infections
;
diagnosis
;
drug therapy
;
Drug Repositioning
;
methods
;
Drugs, Chinese Herbal
;
pharmacology
;
Glycoproteins
;
drug effects
;
metabolism
;
Humans
;
Imaging, Three-Dimensional
;
Mass Screening
;
methods
;
Molecular Docking Simulation
;
methods
;
Pandemics
;
Peptidyl-Dipeptidase A
;
drug effects
;
Pneumonia, Viral
;
diagnosis
;
drug therapy
;
Protein Binding
;
United States
;
United States Food and Drug Administration
10.In Silico Screening of Potential Chinese Herbal Medicine Against COVID-19 by Targeting SARS-CoV-2 3CLpro and Angiotensin Converting Enzyme II Using Molecular Docking.
Liang-Qin GAO ; Jing XU ; Shao-Dong CHEN
Chinese journal of integrative medicine 2020;26(7):527-532
OBJECTIVE:
To seek potential Chinese herbal medicine (CHM) for the treatment of coronavirus disease 2019 (COVID-19) through the molecular docking of the medicine with SARS-CoV-2 3CL hydrolytic enzyme and the angiotensin converting enzyme II(ACE2) as receptors, using computer virtual screening technique, so as to provide a basis for combination forecasting.
METHODS:
The molecular docking of CHM with the SARS-Cov-2 3CL hydrolase and the ACE2 converting enzyme, which were taken as the targets, was achieved by the Autodock Vina software. The CHM monomers acting on 3CLpro and ACE2 receptors were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, the active ingredients were selected, and the key CHMs and compounds were speculated. Based on the perspective of network pharmacology, the chemical-target network was constructed, and the functional enrichment analysis of gene ontology and the pathway enrichment analysis of Kyoto encyclopedia of genes and genomes were carried out by DAVID to speculate about the mechanism of action of the core drug pairs.
RESULTS:
There are 6 small molecule compounds that have the optimal binding energy with the two target proteins. Among 238 potential anti-COVID-19 herbs screened in total, 16 kinds of CHM containing the most active ingredients, and 5 candidate anti-COVID-19 herbs that had been used in high frequency, as well as a core drug pair, namely, Forsythiae Fructus-Lonicerae Japonicae Flos were selected.
CONCLUSION
The core drug pair of Forsythiae Fructus-Lonicerae Japonicae Flos containing multiple components and targets is easy to combine with 3CLpro and ACE2, and exerts an anti-COVID-19 pneumonia effect through multi-component and multi-target, and plays the role of anti-COVID-19 pneumonia in multi-pathway.
Betacoronavirus
;
metabolism
;
Computer Simulation
;
Coronavirus Infections
;
drug therapy
;
Drugs, Chinese Herbal
;
therapeutic use
;
Gene Ontology
;
Humans
;
Molecular Docking Simulation
;
Pandemics
;
Peptidyl-Dipeptidase A
;
metabolism
;
Pneumonia, Viral
;
drug therapy
;
Thermodynamics

Result Analysis
Print
Save
E-mail