1.Establishment of different pneumonia mouse models suitable for traditional Chinese medicine screening.
Xing-Nan YUE ; Jia-Yin HAN ; Chen PAN ; Yu-Shi ZHANG ; Su-Yan LIU ; Yong ZHAO ; Xiao-Meng ZHANG ; Jing-Wen WU ; Xuan TANG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(15):4089-4099
In this study, lipopolysaccharide(LPS), ovalbumin(OVA), and compound 48/80(C48/80) were administered to establish non-infectious pneumonia models under simulated clinical conditions, and the correlation between their pathological characteristics and traditional Chinese medicine(TCM) syndromes was compared, providing the basis for the selection of appropriate animal models for TCM efficacy evaluation. An acute pneumonia model was established by nasal instillation of LPS combined with intraperitoneal injection for intensive stimulation. Three doses of OVA mixed with aluminum hydroxide adjuvant were injected intraperitoneally on days one, three, and five and OVA was administered via endotracheal drip for excitation on days 14-18 to establish an OVA-induced allergic pneumonia model. A single intravenous injection of three doses of C48/80 was adopted to establish a C48/80-induced pneumonia model. By detecting the changes in peripheral blood leukocyte classification, lung tissue and plasma cytokines, immunoglobulins(Ig), histamine levels, and arachidonic acid metabolites, the multi-dimensional analysis was carried out based on pathological evaluation. The results showed that the three models could cause pulmonary edema, increased wet weight in the lung, and obvious exudative inflammation in lung tissue pathology, especially for LPS. A number of pyrogenic cytokines, inclading interleukin(IL)-6, interferon(IFN)-γ, IL-1β, and IL-4 were significantly elevated in the LPS pneumonia model. Significantly increased levels of prostacyclin analogs such as prostaglandin E2(PGE2) and PGD2, which cause increased vascular permeability, and neutrophils in peripheral blood were significantly elevated. The model could partly reflect the clinical characteristics of phlegm heat accumulating in the lung or dampness toxin obstructing the lung. The OVA model showed that the sensitization mediators IgE and leukotriene E4(LTE4) were increased, and the anti-inflammatory prostacyclin 6-keto-PGF2α was decreased. Immune cells(lymphocytes and monocytes) were decreased, and inflammatory cells(neutrophils and basophils) were increased, reflecting the characteristics of "deficiency", "phlegm", or "dampness". Lymphocytes, monocytes, and basophils were significantly increased in the C48/80 model. The phenotype of the model was that the content of histamine, a large number of prostacyclins(6-keto-PGE1, PGF2α, 15-keto-PGF2α, 6-keto-PGF1α, 13,14-D-15-keto-PGE2, PGD2, PGE2, and PGH2), LTE4, and 5-hydroxyeicosatetraenoic acid(5S-HETE) was significantly increased, and these indicators were associated with vascular expansion and increased vascular permeability. The pyrogenic inflammatory cytokines were not increased. The C48/80 model reflected the characteristics of cold and damp accumulation. In the study, three non-infectious pneumonia models were constructed. The LPS model exhibited neutrophil infiltration and elevated inflammatory factors, which was suitable for the efficacy study of TCM for clearing heat, detoxifying, removing dampness, and eliminating phlegm. The OVA model, which took allergic inflammation as an index, was suitable for the efficacy study of Yiqi Gubiao formulas. The C48/80 model exhibited increased vasoactive substances(histamine, PGs, and LTE4), which was suitable for the efficacy study and evaluation of TCM for warming the lung, dispersing cold, drying dampness, and resolving phlegm. The study provides a theoretical basis for model selection for the efficacy evaluation of TCM in the treatment of pneumonia.
Animals
;
Disease Models, Animal
;
Mice
;
Pneumonia/genetics*
;
Medicine, Chinese Traditional
;
Male
;
Humans
;
Cytokines/immunology*
;
Female
;
Lipopolysaccharides/adverse effects*
;
Lung/drug effects*
;
Drugs, Chinese Herbal
;
Ovalbumin
;
Mice, Inbred BALB C
2.The regulatory function of elevated interleukin 36γ to CD8+ T cell function in secondary fungal pneumonia patients with chronic obstructive pulmonary diseases.
Xiaoshan CUI ; Yinglan LI ; Tongxiu ZHAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):637-643
Objectives To investigate interleukin 36γ (IL-36γ) expression, and analyze the influence of IL-36γ to CD8+ T cell activity in chronic obstructive pulmonary diseases (COPD) patients with secondary fungal pneumonia. Methods Peripheral blood was collected from 47 COPD patients, 39 COPD patients with secondary fungal pneumonia, and 20 controls. Bronchial alveolar lavage fluid (BALF) was isolated from 27 COPD patients with secondary fungal pneumonia. CD8+ T cells were purified. The levels of four IL-36 isoforms in plasma and BALF were measured by enzyme linked immunosorbent assay (ELISA). CD8+ T cells were stimulated with recombinant human IL-36γ. The levels of interferon γ(IFN-γ), tumor necrosis factor α(TNF-α), perforin and granzyme B in the cultured supernatants were measured by ELISA. Recombinant human IL-36γ-stimulated CD8+ T cells were co-cultured with NCI-H1882 cells in either direct cell-to-cell contact or TranswellTM manner. The levels of IFN-γ, TNF-α, and lactate dehydrogenase in the cultured supernatants were assessed. The percentage of target cell death was calculated. Results Plasma IL-36α, IL-36β, and IL-36γ levels were significantly elevated in both COPD group and COPD with secondary fungal pneumonia group compared with those in control group. However, only plasma IL-36γ level was higher in COPD with secondary fungal pneumonia group than that in COPD group [(200.11±99.95)pg/mL vs (53.03±87.18)pg/mL, P=0.023]. There was no remarkable difference in plasma IL-36 receptor antagonist level among three groups. IL-36γ level in BALF from infectious site was higher than that from non-infectious site in COPD with secondary fungal pneumonia group [(305.82±59.60)pg/mL vs (251.93±76.01)pg/mL, P=0.011]. IL-36γ stimulation enhanced IFN-γ, TNF-α, perforin and granzyme B secreted by CD8+ T cells. When IL-36γ-stimulated CD8+ T cells were directly mixed with NCI-H1882 cells for co-culture, the percentage of cell death was increased [(16.06±3.67)% vs (11.47±2.36)%, P=0.002]. When using TranswellTM plate for non-contact co-culture, IL-36γ-stimulated CD8+ T cell-mediated death of NCI-H1882 cells showed no significant difference compared to that without stimulation [(4.77±0.78)% vs (4.99±0.92)%, P=0.554]. Conclusion IL-36γ level in plasma and infectious site is elevated in COPD patients with secondary fungal pneumonia, which enhances the cytotoxicity of CD8+ T cells in peripheral blood and infectious microenviroment.
Humans
;
Pulmonary Disease, Chronic Obstructive/complications*
;
CD8-Positive T-Lymphocytes/metabolism*
;
Male
;
Female
;
Aged
;
Middle Aged
;
Interferon-gamma/metabolism*
;
Interleukin-1/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Lung Diseases, Fungal/complications*
;
Bronchoalveolar Lavage Fluid/chemistry*
;
Perforin/metabolism*
;
Pneumonia/immunology*
;
Granzymes/metabolism*
3.Influenza A virus exposure may cause increased symptom severity and deaths in coronavirus disease 2019.
Zhan-Wei HU ; Xi WANG ; Jian-Ping ZHAO ; Jing MA ; Hai-Chao LI ; Guang-Fa WANG ; Yuan CHENG ; Hong ZHANG
Chinese Medical Journal 2020;133(20):2410-2414
BACKGROUND:
The coronavirus disease 2019 (COVID-19) outbreak occurred during the flu season around the world. This study aimed to analyze the impact of influenza A virus (IAV) exposure on COVID-19.
METHODS:
Seventy COVID-19 patients admitted to the hospital during January and February 2020 in Wuhan, China were included in this retrospective study. Serum tests including respiratory pathogen immunoglobulin M (IgM) and inflammation biomarkers were performed upon admission. Patients were divided into common, severe, and critical types according to disease severity. Symptoms, inflammation indices, disease severity, and fatality rate were compared between anti-IAV IgM-positive and anti-IAV IgM-negative groups. The effects of the empirical use of oseltamivir were also analyzed in both groups. For comparison between groups, t tests and the Mann-Whitney U test were used according to data distribution. The Chi-squared test was used to compare disease severity and fatality between groups.
RESULTS:
Thirty-two (45.71%) of the 70 patients had positive anti-IAV IgM. Compared with the IAV-negative group, the positive group showed significantly higher proportions of female patients (59.38% vs. 34.21%, χ = 4.43, P = 0.035) and patients with fatigue (59.38% vs. 34.21%, χ = 4.43, P = 0.035). The levels of soluble interleukin 2 receptor (median 791.00 vs. 1075.50 IU/mL, Z = -2.70, P = 0.007) and tumor necrosis factor α (median 10.75 vs. 11.50 pg/mL, Z = -2.18, P = 0.029) were significantly lower in the IAV-positive group. Furthermore, this group tended to have a higher proportion of critical patients (31.25% vs. 15.79%, P = 0.066) and a higher fatality rate (21.88% vs. 7.89%, P = 0.169). Notably, in the IAV-positive group, patients who received oseltamivir had a significantly lower fatality rate (0 vs. 36.84%, P = 0.025) compared with those not receiving oseltamivir.
CONCLUSIONS
The study suggests that during the flu season, close attention should be paid to the probability of IAV exposure in COVID-19 patients. Prospective studies with larger sample sizes are needed to clarify whether IAV increases the fatality rate of COVID-19 and to elucidate any benefits of empirical usage of oseltamivir.
Adult
;
Aged
;
Antibodies, Viral/blood*
;
Betacoronavirus
;
COVID-19
;
Coronavirus Infections/mortality*
;
Female
;
Humans
;
Immunoglobulin M/blood*
;
Influenza A virus/immunology*
;
Influenza, Human/complications*
;
Male
;
Middle Aged
;
Pandemics
;
Pneumonia, Viral/mortality*
;
Retrospective Studies
;
SARS-CoV-2
;
Severity of Illness Index
4.Clinical observation of 6 severe COVID-19 patients treated with plasma exchange or tocilizumab.
Song LUO ; Lijuan YANG ; Chun WANG ; Chuanmiao LIU ; Dianming LI
Journal of Zhejiang University. Medical sciences 2020;49(2):227-231
OBJECTIVE:
To observe the clinical effect of plasma exchange and tocilizumab in treatment of patients with severe coronavirus disease 2019 (COVID-19).
METHODS:
Six patients with severe COVID-19 admitted in First Affiliated Hospital of Bengbu Medical College from January 25 to February 25, 2020. Three patients were treated with plasma exchange and three patients were treated with tocilizumab. The effect on excessive inflammatory reaction of plasma exchange and tocilizumab was observed.
RESULTS:
The C-reactive protein (CRP) and IL-6 levels were significantly decreased and the lymphocyte and prothrombin time were improved in 3 patients after treatment with plasma exchange; while inflammation level was not significantly decreased, and lymphocyte and prothrombin time did not improve in 3 patients treated with tocilizumab.
CONCLUSIONS
For severe COVID-19 patients with strong inflammatory reaction, plasma exchange may be preferred.
Antibodies, Monoclonal, Humanized
;
administration & dosage
;
Betacoronavirus
;
isolation & purification
;
Coronavirus Infections
;
blood
;
immunology
;
therapy
;
Cytokine Release Syndrome
;
therapy
;
Humans
;
Pandemics
;
Plasma Exchange
;
standards
;
Pneumonia, Viral
;
blood
;
immunology
;
therapy
;
Prothrombin Time
;
Treatment Outcome
5.Dynamic inflammatory response in a critically ill COVID-19 patient treated with corticosteroids.
Sheng ZHAGN ; Danping LI ; Huazhong CHEN ; Dan ZHENG ; Yiping ZHOU ; Baoguo CHEN ; Weiwu SHI ; Ronghai LIN
Journal of Zhejiang University. Medical sciences 2020;49(2):220-226
OBJECTIVE:
To investigate the effect of corticosteroids therapy on the inflammatory response in a critically ill coronavirus disease 2019 (COVID-19) patient.
METHODS:
A 55-year old female patient with critical ill COVID-19 was admitted in Taizhou Hospital on January 19, 2020. The patient was treated with methylprednisolone 80 mg on the 2nd day after admission. Thereafter, the dose was adjusted in a timely manner and the therapy lasted for 13 days. The peripheral lymphocyte subsets (CD3T, CD4 T, CD8 T, NK cells, B cells), as well as serum levels of lymphocyte factors (IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ) were dynamically monitored.
RESULTS:
On D1 of admission, the numbers of peripheral blood CD3 T, CD4 T, CD8 T, and NK cells were significantly lower than the normal range. With the improvement of the disease, the numbers of CD3 T, CD8 T and CD4 T cells gradually recovered and showed a linear growth trend (linear fitting equation: =18.59+109.4, <0.05). On D2 of admission, the patient's IL-6 and IL-10 levels were significantly higher than normal values, IFN-γ was at a normal high value, and then rapidly decreased; IL-2, IL-4, and TNF-α were all in the normal range. On the D6 and D7, the IL-6 and IL-10 decreased to the normal range for the first time. On the D18, the sputum virus nucleic acid test was negative for the first time, and the fecal virus nucleic acid test was still positive; on the D20 the sputum and fecal virus nucleic acid test were both negative. On D34, the patient recovered and was discharged. At the discharge the muscle strength score of the patient was 44 and the daily life ability evaluation was 90.
CONCLUSIONS
In the absence of effective antiviral drugs, early use of appropriate doses of corticosteroids in critically ill patient with COVID-19 can quickly alleviate inflammatory response and improve clinical symptoms, however, it may reduce the number of T cells, and to adjust the dose in time is necessary.
Betacoronavirus
;
isolation & purification
;
Cell Count
;
Coronavirus Infections
;
diagnosis
;
drug therapy
;
immunology
;
physiopathology
;
Critical Illness
;
Cytokines
;
blood
;
Female
;
Humans
;
Methylprednisolone
;
administration & dosage
;
adverse effects
;
Middle Aged
;
Pandemics
;
Pneumonia, Viral
;
diagnosis
;
drug therapy
;
immunology
;
physiopathology
;
T-Lymphocyte Subsets
;
drug effects
;
Treatment Outcome
6.Replication and transmission mechanisms of highly pathogenic human coronaviruses.
Journal of Zhejiang University. Medical sciences 2020;49(1):324-339
The three known human highly pathogenic coronaviruses are severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus, (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human highly pathogenic coronaviruses are composed of non-structural proteins, structural proteins and accessory proteins. Viral particles recognize host receptors via spike glycoprotein (S protein), enter host cells by membrane fusion, replicate in host cells through large replication-transcription complexes, and promote proliferation by interfering with and suppressing the host's immune response. Human highly pathogenic coronaviruses are hosted by humans and vertebrates. Viral particles are transmitted through droplets, contact and aerosols or likely through digestive tract, urine, eyes and other routes. This review discusses the mechanisms of proliferation and transmission of highly pathogenic human coronaviruses based on the results of existing research, providing basis for future study on interrupting the transmission and pathogenicity of human highly pathogenic coronaviruses.
Animals
;
Betacoronavirus
;
physiology
;
Coronavirus Infections
;
immunology
;
transmission
;
virology
;
Humans
;
Middle East Respiratory Syndrome Coronavirus
;
physiology
;
Pandemics
;
Pneumonia, Viral
;
immunology
;
transmission
;
virology
;
SARS Virus
;
physiology
;
Virus Replication
;
physiology
7.A human circulating immune cell landscape in aging and COVID-19.
Yingfeng ZHENG ; Xiuxing LIU ; Wenqing LE ; Lihui XIE ; He LI ; Wen WEN ; Si WANG ; Shuai MA ; Zhaohao HUANG ; Jinguo YE ; Wen SHI ; Yanxia YE ; Zunpeng LIU ; Moshi SONG ; Weiqi ZHANG ; Jing-Dong J HAN ; Juan Carlos Izpisua BELMONTE ; Chuanle XIAO ; Jing QU ; Hongyang WANG ; Guang-Hui LIU ; Wenru SU
Protein & Cell 2020;11(10):740-770
Age-associated changes in immune cells have been linked to an increased risk for infection. However, a global and detailed characterization of the changes that human circulating immune cells undergo with age is lacking. Here, we combined scRNA-seq, mass cytometry and scATAC-seq to compare immune cell types in peripheral blood collected from young and old subjects and patients with COVID-19. We found that the immune cell landscape was reprogrammed with age and was characterized by T cell polarization from naive and memory cells to effector, cytotoxic, exhausted and regulatory cells, along with increased late natural killer cells, age-associated B cells, inflammatory monocytes and age-associated dendritic cells. In addition, the expression of genes, which were implicated in coronavirus susceptibility, was upregulated in a cell subtype-specific manner with age. Notably, COVID-19 promoted age-induced immune cell polarization and gene expression related to inflammation and cellular senescence. Therefore, these findings suggest that a dysregulated immune system and increased gene expression associated with SARS-CoV-2 susceptibility may at least partially account for COVID-19 vulnerability in the elderly.
Adult
;
Aged
;
Aged, 80 and over
;
Aging
;
genetics
;
immunology
;
Betacoronavirus
;
CD4-Positive T-Lymphocytes
;
metabolism
;
Cell Lineage
;
Chromatin Assembly and Disassembly
;
Coronavirus Infections
;
immunology
;
Cytokine Release Syndrome
;
etiology
;
immunology
;
Cytokines
;
biosynthesis
;
genetics
;
Disease Susceptibility
;
Flow Cytometry
;
methods
;
Gene Expression Profiling
;
Gene Expression Regulation, Developmental
;
Gene Rearrangement
;
Humans
;
Immune System
;
cytology
;
growth & development
;
immunology
;
Immunocompetence
;
genetics
;
Inflammation
;
genetics
;
immunology
;
Mass Spectrometry
;
methods
;
Middle Aged
;
Pandemics
;
Pneumonia, Viral
;
immunology
;
Sequence Analysis, RNA
;
Single-Cell Analysis
;
Transcriptome
;
Young Adult
8.Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics.
Protein & Cell 2020;11(10):707-722
The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.
Adoptive Transfer
;
Alveolar Epithelial Cells
;
pathology
;
Animals
;
Apoptosis
;
Betacoronavirus
;
Body Fluids
;
metabolism
;
CD4-Positive T-Lymphocytes
;
immunology
;
Clinical Trials as Topic
;
Coinfection
;
prevention & control
;
therapy
;
Coronavirus Infections
;
complications
;
immunology
;
Disease Models, Animal
;
Endothelial Cells
;
pathology
;
Extracorporeal Membrane Oxygenation
;
Genetic Therapy
;
methods
;
Genetic Vectors
;
administration & dosage
;
therapeutic use
;
Humans
;
Immunity, Innate
;
Inflammation Mediators
;
metabolism
;
Lung
;
pathology
;
physiopathology
;
Mesenchymal Stem Cell Transplantation
;
methods
;
Mesenchymal Stem Cells
;
physiology
;
Multiple Organ Failure
;
etiology
;
prevention & control
;
Pandemics
;
Pneumonia, Viral
;
complications
;
immunology
;
Respiratory Distress Syndrome, Adult
;
immunology
;
pathology
;
therapy
;
Translational Medical Research
9.Coronavirus Disease 2019 Influenza A in Children: An Observational Control Study in China.
Yang ZHAO ; De Lin SUN ; Heather C BOUCHARD ; Xin Xin ZHANG ; Gang WAN ; Yi Wei HAO ; Shu Xin HE ; Yu Yong JIANG ; Lin PANG
Biomedical and Environmental Sciences 2020;33(8):614-619
This study aimed to understand the differences in clinical, epidemiological, and laboratory features between the new coronavirus disease 2019 (COVID-2019) and influenza A in children. Data of 23 hospitalized children with COVID-19 (9 boys, 5.7 ± 3.8 years old) were compared with age- and sex-matched 69 hospitalized and 69 outpatient children with influenza A from a hospital in China. The participants' epidemiological history, family cluster, clinical manifestations, and blood test results were assessed. Compared with either inpatients or outpatients with influenza A, children with COVID-19 showed significantly more frequent family infections and higher ratio of low fever (< 37.3 °C), but shorter cough and fever duration, lower body temperature, and lower rates of cough, fever, high fever (> 39 °C), nasal congestion, rhinorrhea, sore throat, vomiting, myalgia or arthralgia, and febrile seizures. They also showed higher counts of lymphocytes, T lymphocyte CD8, and platelets and levels of cholinesterase, aspartate aminotransferase, lactate dehydrogenase, and lactic acid, but lower serum amyloid, C-reactive protein, and fibrinogen levels and erythrocyte sedimentation rate, and shorter prothrombin time. The level of alanine aminotransferase in children with COVID-19 is lower than that in inpatients but higher than that in outpatients with influenza A. Pediatric COVID-19 is associated with more frequent family infection, milder symptoms, and milder immune responses relative to pediatric influenza A.
Betacoronavirus
;
physiology
;
Case-Control Studies
;
Child
;
Coronavirus Infections
;
blood
;
epidemiology
;
immunology
;
virology
;
Female
;
Humans
;
Influenza, Human
;
blood
;
epidemiology
;
immunology
;
Male
;
Pandemics
;
Pneumonia, Viral
;
blood
;
epidemiology
;
immunology
;
virology
10.Study on treatment of "cytokine storm" by anti-2019-nCoV prescriptions based on arachidonic acid metabolic pathway.
Yue REN ; Mei-Cun YAO ; Xiao-Qian HUO ; Yu GU ; Wei-Xing ZHU ; Yan-Jiang QIAO ; Yan-Ling ZHANG
China Journal of Chinese Materia Medica 2020;45(6):1225-1231
Since the outbreak of 2019-nCoV, the epidemic has developed rapidly and the situation is grim. LANCET figured out that the 2019-nCoV is closely related to "cytokine storm". "Cytokine storm" is an excessive immune response of the body to external stimuli such as viruses and bacteria. As the virus attacking the body, it stimulates the secretion of a large number of inflammatory factors: interleukin(IL), interferon(IFN), C-X-C motif chemokine(CXCL) and so on, which lead to cytokine cascade reaction. With the exudation of inflammatory factors, cytokines increase abnormally in tissues and organs, interfering with the immune system, causing excessive immune response of the body, resulting in diffuse damage of lung cells, pulmonary fibrosis, and multiple organ damage, even death. Arachidonic acid(AA) metabolic pathway is principally used to synthesize inflammatory cytokines, such as monocyte chemotactic protein 1(MCP-1), tumor necrosis factor(TNF), IL, IFN, etc., which is closely related to the occurrence, development and regression of inflammation. Therefore, the inhibition of AA metabolism pathway is benefit for inhibiting the release of inflammatory factors in the body and alleviating the "cytokine storm". Based on the pharmacophore models of the targets on AA metabolic pathway, the traditional Chinese medicine database 2009(TCMD 2009) was screened. The potential herbs were ranked by the number of hit molecules, which were scored by pharmacophore fit value. In the end, we obtained the potential active prescriptions on "cytokine storm" according to the potential herbs in the "National novel coronavirus pneumonia diagnosis and treatment plan(trial version sixth)". The results showed that the hit components with the inhibitory effect on AA were magnolignan Ⅰ, lonicerin and physcion-8-O-β-D-glucopy-ranoside, which mostly extracted from Magnoliae Officinalis Cortex, Zingiberis Rhizoma Recens, Lonicerae Japonicae Flos, Rhei Radix et Rhizoma, Salviae Miltiorrhizae Radix et Rhizoma, Scutellariae Radix, Gardeniae Fructus, Ginseng Radix et Rhizoma, Arctii Fructus, Dryopteridis Crassirhizomatis Rhizoma, Paeoniaeradix Rubra, Dioscoreae Rhizoma. Finally the anti-2019-nCoV prescriptions were analyzed to obtain the potential active prescriptions on AA metabolic pathway, Huoxiang Zhengqi Capsules, Jinhua Qinggan Granules, Lianhua Qingwen Capsules, Qingfei Paidu Decoction, Xuebijing Injection, Reduning Injection and Tanreqing Injection were found that may prevent 2019-nCoV via regulate cytokines. This study intends to provide reference for clinical use of traditional Chinese medicine to resist new coronavirus.
Arachidonic Acid/metabolism*
;
Betacoronavirus
;
COVID-19
;
Coronavirus Infections/immunology*
;
Cytokines/immunology*
;
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Medicine, Chinese Traditional
;
Metabolic Networks and Pathways
;
Pandemics
;
Pneumonia, Viral/immunology*
;
SARS-CoV-2
;
COVID-19 Drug Treatment

Result Analysis
Print
Save
E-mail