1.Construction of cardiac organoids derived from human induced pluripotent stem cells for cardiac disease modeling and drug evaluation.
Xue GONG ; Yongyang FAN ; Kaiyuan LUO ; Yi YAN ; Zhonghao LI
Journal of Southern Medical University 2025;45(11):2444-2455
METHODS:
Cardiac organoids derived from the self-assembled human induced pluripotent stem cells were constructed by regulating the Wnt signaling pathway. Flow cytometry was used to detect the proportion of cardiomyocytes in the cardiac organoids, and RT-qPCR was employed to detect the mRNA expressions. Immunofluorescence staining was used to detect the protein expressions of TNNT2, CD31, and vimentin. The beating amplitude of the cardiac organoids was determined with calcium transient. In vitro myocardial injury models and ischemia-reperfusion models were established, and the cell injuries were examined using Masson staining. TUNEL staining and calcium transient detection were used to evaluate the adverse effects of doxorubicin and trastuzumab in the cardiac organoids.
RESULTS:
The cardiac organoids began to beat on the 8th day of culture and consisted of 32.4% cardiomyocytes with high expressions of the myocardial markers TNNT2, NKX2.5, RYR2 and KCNJ2. No significant differences in morphological size, beating frequency, proportion of cardiomyocytes, or myocardial contractility were observed in the cardiac organoids differentiated from different batches. These cardiac organoids could be maintained in in vitro culture conditions for at least 50 days. Captopril treatment could obviously alleviate liquid nitrogen-induced myocardial injury in the cardiac organoids. Hypoxia/reoxygenation induced ischemia-reperfusion injury and promoted myocardial fibrosis and apoptosis in the cardiac organoids. Treatment with doxorubicin for 24 h resulted in significantly increased cell death and reduced beating frequency and cell viability in the cardiac organoids in a dose-dependent manner. Trastuzumab significantly impaired the contractile and calcium handling abilities of the cardiac organoids.
CONCLUSIONS
Cardiac organoids derived from human induced pluripotent stem cells have been successfully constructed and can be used for cardiac disease modeling and drug evaluation.
Humans
;
Induced Pluripotent Stem Cells/cytology*
;
Organoids/cytology*
;
Myocytes, Cardiac/cytology*
;
Cell Differentiation
;
Heart Diseases
2.SMAD2/3-SMYD2 and developmental transcription factors cooperate with cell-cycle inhibitors to guide tissue formation.
Stefania MILITI ; Reshma NIBHANI ; Martin POOK ; Siim PAUKLIN
Protein & Cell 2025;16(4):260-285
Tissue formation and organ homeostasis are achieved by precise coordination of proliferation and differentiation of stem cells and progenitors. While deregulation of these processes can result in degenerative disease or cancer, their molecular interplays remain unclear. Here we show that the switch of human pluripotent stem cell (hPSC) self-renewal to differentiation is associated with the induction of distinct cyclin-dependent kinase inhibitors (CDKIs). In hPSCs, Activin/Nodal/TGFβ signaling maintains CDKIs in a poised state via SMAD2/3-NANOG-OCT4-EZH2-SNON transcriptional complex. Upon gradual differentiation, CDKIs are induced by successive transcriptional complexes between SMAD2/3-SMYD2 and developmental regulators such as EOMES, thereby lengthening the G1 phase. This, in turn, induces SMAD2/3 transcriptional activity by blocking its linker phosphorylation. Such SMAD2/3-CDKI positive feedback loops drive the exit from pluripotency and stepwise cell-fate specification that could be harnessed for producing cells for therapeutic applications. Our study uncovers fundamental mechanisms of how cell-fate specification is interconnected to cell-cycle dynamics and provides insight into autonomous circuitries governing tissue self-formation.
Humans
;
Smad2 Protein/genetics*
;
Smad3 Protein/genetics*
;
Cell Differentiation
;
Pluripotent Stem Cells/metabolism*
;
Signal Transduction
;
Octamer Transcription Factor-3/genetics*
;
Enhancer of Zeste Homolog 2 Protein/genetics*
;
Nanog Homeobox Protein/genetics*
;
Phosphorylation
3.Skin organoid transplantation promotes tissue repair with scarless in frostbite.
Wenwen WANG ; Pu LIU ; Wendi ZHU ; Tianwei LI ; Ying WANG ; Yujie WANG ; Jun LI ; Jie MA ; Ling LENG
Protein & Cell 2025;16(4):240-259
Frostbite is the most common cold injury and is caused by both immediate cold-induced cell death and the gradual development of localized inflammation and tissue ischemia. Delayed healing of frostbite often leads to scar formation, which not only causes psychological distress but also tends to result in the development of secondary malignant tumors. Therefore, a rapid healing method for frostbite wounds is urgently needed. Herein, we used a mouse skin model of frostbite injury to evaluate the recovery process after frostbite. Moreover, single-cell transcriptomics was used to determine the patterns of changes in monocytes, macrophages, epidermal cells, and fibroblasts during frostbite. Most importantly, human-induced pluripotent stem cell (hiPSC)-derived skin organoids combined with gelatin-hydrogel were constructed for the treatment of frostbite. The results showed that skin organoid treatment significantly accelerated wound healing by reducing early inflammation after frostbite and increasing the proportions of epidermal stem cells. Moreover, in the later stage of wound healing, skin organoids reduced the overall proportions of fibroblasts, significantly reduced fibroblast-to-myofibroblast transition by regulating the integrin α5β1-FAK pathway, and remodeled the extracellular matrix (ECM) through degradation and reassembly mechanisms, facilitating the restoration of physiological ECM and reducing the abundance of ECM associated with abnormal scar formation. These results highlight the potential application of organoids for promoting the reversal of frostbite-related injury and the recovery of skin functions. This study provides a new therapeutic alternative for patients suffering from disfigurement and skin dysfunction caused by frostbite.
Animals
;
Organoids/metabolism*
;
Mice
;
Humans
;
Wound Healing
;
Frostbite/metabolism*
;
Skin/pathology*
;
Induced Pluripotent Stem Cells/cytology*
;
Cicatrix/pathology*
;
Fibroblasts/metabolism*
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Extracellular Matrix/metabolism*
;
Male
4.Optimized derivation and culture system of human naïve pluripotent stem cells with enhanced DNA methylation status and genomic stability.
Yan BI ; Jindian HU ; Tao WU ; Zhaohui OUYANG ; Tan LIN ; Jiaxing SUN ; Xinbao ZHANG ; Xiaoyu XU ; Hong WANG ; Ke WEI ; Shaorong GAO ; Yixuan WANG
Protein & Cell 2025;16(10):858-872
Human naïve pluripotent stem cells (PSCs) hold great promise for embryonic development studies. Existing induction and culture strategies for these cells, heavily dependent on MEK inhibitors, lead to widespread DNA hypomethylation, aberrant imprinting loss, and genomic instability during extended culture. Here, employing high-content analysis alongside a bifluorescence reporter system indicative of human naïve pluripotency, we screened over 1,600 chemicals and identified seven promising candidates. From these, we developed four optimized media-LAY, LADY, LUDY, and LKPY-that effectively induce and sustain PSCs in the naïve state. Notably, cells reset or cultured in these media, especially in the LAY system, demonstrate improved genome-wide DNA methylation status closely resembling that of pre-implantation counterparts, with partially restored imprinting and significantly enhanced genomic stability. Overall, our study contributes advancements to naïve pluripotency induction and long-term maintenance, providing insights for further applications of naïve PSCs.
Humans
;
DNA Methylation/drug effects*
;
Genomic Instability
;
Pluripotent Stem Cells/metabolism*
;
Cell Culture Techniques/methods*
;
Cells, Cultured
5.Research Advances in the Construction and Application of Intestinal Organoids.
Qing Xue MENG ; Hong Yang YI ; Peng WANG ; Shan LIU ; Wei Quan LIANG ; Cui Shan CHI ; Chen Yu MAO ; Wei Zheng LIANG ; Jun XUE ; Hong Zhou LU
Biomedical and Environmental Sciences 2025;38(2):230-247
The structure of intestinal tissue is complex. In vitro simulation of intestinal structure and function is important for studying intestinal development and diseases. Recently, organoids have been successfully constructed and they have come to play an important role in biomedical research. Organoids are miniaturized three-dimensional (3D) organs, derived from stem cells, which mimic the structure, cell types, and physiological functions of an organ, making them robust models for biomedical research. Intestinal organoids are 3D micro-organs derived from intestinal stem cells or pluripotent stem cells that can successfully simulate the complex structure and function of the intestine, thereby providing a valuable platform for intestinal development and disease research. In this article, we review the latest progress in the construction and application of intestinal organoids.
Organoids/cytology*
;
Intestines/physiology*
;
Humans
;
Animals
;
Pluripotent Stem Cells
6.Research progress in engineered hydrogels for organoids.
Ziran CHEN ; Rong HUANG ; Pengyu LI ; Yan LU ; Kai LI ; Wei SONG
Chinese Journal of Biotechnology 2025;41(8):3036-3048
Organoids are three-dimensional (3D) cellular structures formed through the differentiation and self-organization of pluripotent stem cells or tissue-derived cells, showing considerable potential in the research on disease mechanism, personalized medicine, and developmental biology. However, the development of organoids is limited by the complex composition, batch-to-batch variations, and immunogenicity of basement-membrane matrix in the current culture system, which hinders the clinical translation and in vivo applications of organoids. Hydrogels are highly hydrated 3D polymer network materials, with modifiable mechanical and biochemical properties by engineering, representing an ideal alternative to basement-membrane matrix. This article reviews the research progress in engineered hydrogels with defined composition currently used in organoid culture. We introduce the structural characteristics and engineering design considerations of hydrogels, emphasize the latest research progress and specific application cases, and discuss the future development of these engineered hydrogels, provide valuable insights for the further advancement and optimization of engineered hydrogels for organoid.
Hydrogels/chemistry*
;
Organoids/cytology*
;
Tissue Engineering/methods*
;
Humans
;
Animals
;
Pluripotent Stem Cells/cytology*
;
Cell Culture Techniques, Three Dimensional/methods*
;
Tissue Scaffolds
7.Living biobank: Standardization of organoid construction and challenges.
Ruixin YANG ; Yao QI ; Xiaoyan ZHANG ; Hengjun GAO ; Yingyan YU
Chinese Medical Journal 2024;137(24):3050-3060
In multiple areas such as science, technology, and economic activities, it is necessary to unify the management of repetitive tasks or concepts by standardization to obtain the best order and high efficiency. Organoids, as living tissue models, have rapidly developed in the past decade. Organoids can be used repetitively for in vitro culture, cryopreservation, and recovery for further utilization. Because organoids can recapitulate the parental tissues' morphological phenotypes, cell functions, biological behaviors, and genomic profiles, they are known as renewable "living biobanks". Organoids cover two mainstream fields: Adult stem cell-derived organoids (also known as patient-derived organoids) and induced pluripotent stem cell-derived and/or embryonic stem cell-derived organoids. Given the increasing importance of organoids in the development of new drugs, standardized operation, and management in all steps of organoid construction is an important guarantee to ensure the high quality of products. In this review, we systematically introduce the standardization of organoid construction operation procedures, the standardization of laboratory construction, and available standardization documents related to organoid culture that have been published so far. We also proposed the challenges and prospects in this field.
Organoids
;
Humans
;
Biological Specimen Banks/standards*
;
Induced Pluripotent Stem Cells/cytology*
;
Cryopreservation/methods*
8.Rapamycin mediated caspase 9 homodimerization to safeguard human pluripotent stem cell therapy.
Yang YANG ; Yang LIU ; Min CHEN ; Shuangpeng LI ; Xuan LU ; Yu HE ; Kun ZHANG ; Qingjian ZOU
Chinese Journal of Biotechnology 2023;39(10):4098-4107
Human induced pluripotent stem cells (hiPSCs) are promising in regenerative medicine. However, the pluripotent stem cells (PSCs) may form clumps of cancerous tissue, which is a major safety concern in PSCs therapies. Rapamycin is a safe and widely used immunosuppressive pharmaceutical that acts through heterodimerization of the FKBP12 and FRB fragment. Here, we aimed to insert a rapamycin inducible caspase 9 (riC9) gene in a safe harbor AAVS1 site to safeguard hiPSCs therapy by drug induced homodimerization. The donor vector containing an EF1α promoter, a FRB-FKBP-Caspase 9 (CARD domain) fusion protein and a puromycin resistant gene was constructed and co-transfected with sgRNA/Cas9 vector into hiPSCs. After one to two weeks screening with puromycin, single clones were collected for genotype and phenotype analysis. Finally, rapamycin was used to induce the homodimerization of caspase 9 to activate the apoptosis of the engineered cells. After transfection of hiPSCs followed by puromycin screening, five cell clones were collected. Genome amplification and sequencing showed that the donor DNA has been precisely knocked out at the endogenous AAVS1 site. The engineered hiPSCs showed normal pluripotency and proliferative capacity. Rapamycin induced caspase 9 activation, which led to the apoptosis of all engineered hiPSCs and its differentiated cells with different sensitivity to drugs. In conclusion, we generated a rapamycin-controllable hiPSCs survival by homodimerization of caspase 9 to turn on cell apoptosis. It provides a new strategy to guarantee the safety of the hiPSCs therapy.
Humans
;
Induced Pluripotent Stem Cells
;
Sirolimus/metabolism*
;
Caspase 9/metabolism*
;
RNA, Guide, CRISPR-Cas Systems
;
Pluripotent Stem Cells/metabolism*
;
Cell Differentiation
;
Puromycin/metabolism*
9.Generating universal chimeric antigen receptor expressing cell products from induced pluripotent stem cells: beyond the autologous CAR-T cells.
Xinyue DENG ; Jianfeng ZHOU ; Yang CAO
Chinese Medical Journal 2023;136(2):127-137
Adoptive therapeutic immune cells, such as chimeric antigen receptor (CAR)-T cells and natural killer cells, have established a new generation of precision medicine based on which dramatic breakthroughs have been achieved in intractable lymphoma treatments. Currently, well-explored approaches focus on autologous cells due to their low immunogenicity, but they are highly restricted by the high costs, time consumption of processing, and the insufficiency of primary cells in some patients. Induced pluripotent stem cells (iPSCs) are cell sources that can theoretically produce indefinite well-differentiated immune cells. Based on the above facts, it may be reasonable to combine the iPSC technology and the CAR design to produce a series of highly controllable and economical "live" drugs. Manufacturing hypoimmunogenic iPSCs by inactivation or over-expression at the genetic level and then arming the derived cells with CAR have emerged as a form of "off-the-shelf" strategy to eliminate tumor cells efficiently and safely in a broader range of patients. This review describes the reasonability, feasibility, superiority, and drawbacks of such approaches, summarizes the current practices and relevant research progress, and provides insights into the possible new paths for personalized cell-based therapies.
Humans
;
Receptors, Chimeric Antigen/genetics*
;
Induced Pluripotent Stem Cells
;
Killer Cells, Natural
;
Cell- and Tissue-Based Therapy
;
T-Lymphocytes
;
Immunotherapy, Adoptive
;
Neoplasms/genetics*
10.Development of porcine induced pluripotent stem cells with a CD163 reporter system.
Wei YUE ; Juqing ZHANG ; Xiaolong WU ; Xinchun YANG ; Qiaoyan SHEN ; Shuai YU ; Zhenshuo ZHU ; Chengbao WANG ; Shiqiang ZHANG ; Jinlian HUA
Chinese Journal of Biotechnology 2023;39(1):192-203
As main recipient cells for porcine reproductive and respiratory syndrome virus (PRRSV), porcine alveolar macrophage (PAM) are involved in the progress of several highly pathogenic virus infections. However, due to the fact that the PAM cells can only be obtained from primary tissues, research on PAM-based virus-host interactions remains challenging. The improvement of induced pluripotent stem cells (iPSCs) technology provides a new strategy to develop IPSCs-derived PAM cells. Since the CD163 is a macrophage-specific marker and a validated receptor essential for PRRSV infection, generation of stable porcine induced pluripotent stem cells lines containing CD163 reporter system play important roles in the investigation of IPSCs-PAM transition and PAM-based virus-host interaction. Based on the CRISPR/Cas9- mediated gene editing system, we designed a sgRNA targeting CD163 locus and constructed the corresponding donor vectors. To test whether this reporter system has the expected function, the reporter system was introduced into primary PAM cells to detect the expression of RFP. To validate the low effect on stem cell pluripotency, we generated porcine iPSC lines containing CD163 reporter and assessed the pluripotency through multiple assays such as alkaline phosphatase staining, immunofluorescent staining, and EdU staining. The red-fluorescent protein (RFP) expression was detected in CD163-edited PAM cells, suggesting that our reporter system indeed has the ability to reflect the expression of gene CD163. Compared with wild-type (WT) iPSCs, the CD163 reporter-iPSCs display similar pluripotency-associated transcription factors expression. Besides, cells with the reporter system showed consistent cell morphology and proliferation ability as compared to WT iPSCs, indicating that the edited-cells have no effect on stem cell pluripotency. In conclusion, we generated porcine iPSCs that contain a CD163 reporter system. Our results demonstrated that this reporter system was functional and safe. This study provides a platform to investigate the iPS-PAM development and virus-host interaction in PAM cells.
Swine
;
Animals
;
Induced Pluripotent Stem Cells/metabolism*
;
Receptors, Cell Surface/genetics*
;
Antigens, CD/metabolism*
;
Porcine respiratory and reproductive syndrome virus/genetics*

Result Analysis
Print
Save
E-mail