1.Structurally novel tryptamine-derived alkaloids from the seeds of Peganum harmala and their antiviral activities against respiratory syncytial virus.
Zhongnan WU ; Yubo ZHANG ; Guocai WANG ; Qing TANG ; Yaolan LI ; Xiaoqing XIE ; Yushen LIANG ; Wen CHENG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):972-979
Peganum harmala L. (P. harmala) is a significant economic and medicinal plant. The seeds of P. harmala have been extensively utilized in traditional Chinese medicine, Uighur medicine, and Mongolian medicine, as documented in the Drug Standard of the Ministry of Health of China. Twelve novel tryptamine-derived alkaloids (1-12) and eight known compounds (13-20) were isolated from P. harmala seeds. Compounds 1 and 2 represent the first reported instances of tryptamine-derived heteromers, comprising tryptamine and aniline fragments with previously undocumented C-3-N-1' linkage and C-3-C-4' connection, respectively. Compounds 3-5 were identified as indole-quinazoline heteromers, exhibiting a novel C-3 and NH-1' linkage between indole and quinazoline-derived fragments. Compound 6 demonstrates the dimerization pattern of C-C linked tryptamine-quinazoline dimer. Compound 8 represents a tryptamine-derived heterodimer with a distinctive carbon skeleton, featuring an unusual spiro-tricyclic ring (7) and conventional bicyclic tryptamine. Compounds 9-11 constitute novel 6/5/5/5 spiro-tetracyclic tryptamine-derived alkaloids presenting a unique ring system of tryptamine-spiro-pyrrolizine. Compounds 1-3 and 6-11 were identified as racemates. Compounds 2, 7, 9, 10, and 12 were confirmed via X-ray crystallographic analysis. All isolated compounds (1-20) exhibited varying degrees of antiviral efficacy against respiratory syncytial virus (RSV). Notably, the anti-RSV activity of compound 12 (IC50 5.01 ± 0.14 μmol·L-1) surpassed that of the positive control (ribavirin, IC50 6.23 ± 0.95 μmol·L-1), as validated through plaque reduction and immunofluorescence assays. The identification of anti-RSV compounds from P. harmala seeds may enhance the development and application of this plant in antiviral therapeutic products.
Antiviral Agents/isolation & purification*
;
Tryptamines/isolation & purification*
;
Peganum/chemistry*
;
Seeds/chemistry*
;
Alkaloids/isolation & purification*
;
Molecular Structure
;
Humans
;
Respiratory Syncytial Viruses/drug effects*
;
Plant Extracts/pharmacology*
;
Drugs, Chinese Herbal/pharmacology*
2.Partial knockout of NtPDK1a/1b/1c/1d enhances the disease resistance of Nicotiana tabacum.
Qianwei REN ; Hujiao LAN ; Tianyao LIU ; Huanting ZHAO ; Yating ZHAO ; Rui ZHANG ; Jianzhong LIU
Chinese Journal of Biotechnology 2025;41(2):670-679
The protein kinase A/protein kinase G/protein kinase C-family (AGC kinase family) of eukaryotes is involved in regulating numerous biological processes. The 3-phosphoinositide- dependent protein kinase 1 (PDK1), is a conserved serine/threonine kinase in eukaryotes. To understand the roles of PDK1 homologous genes in cell death and immunity in tetraploid Nicotiana tabacum, the previuosly generated transgenic CRISPR/Cas9 lines, in which 5-7 alleles of the 4 homologous PDK1 genes (NtPDK1a/1b/1c/1d homologs) simultaneously knocked out, were used in this study. Our results showed that the hypersensitive response (HR) triggered by transient overexpression of active Pto (PtoY207D) or soybean GmMEKK1 was significantly delayed, whereas the resistance to Pseudomonas syrangae pv. tomato DC3000 (Pst DC3000) and tobacco mosaic virus (TMV) was significantly elevated in these partial knockout lines. The elevated resistance to Pst DC3000 and TMV was correlated with the elevated activation of NtMPK6, NtMPK3, and NtMPK4. Taken together, our results indicated that NtPDK1s play a positive role in cell death but a positive role in disease resistance, likely through negative regulation of the MAPK signaling cascade.
Nicotiana/virology*
;
Disease Resistance/genetics*
;
Plant Diseases/immunology*
;
Plants, Genetically Modified/genetics*
;
Gene Knockout Techniques
;
Plant Proteins/genetics*
;
CRISPR-Cas Systems
;
Protein Serine-Threonine Kinases/genetics*
;
3-Phosphoinositide-Dependent Protein Kinases/genetics*
;
Pyruvate Dehydrogenase Acetyl-Transferring Kinase
;
Tobacco Mosaic Virus/pathogenicity*
3.N-terminal domain of Rep encoded by beet severe curly top virus mediates suppression of RNA silencing and induces VIM5 expression.
Jingyu XU ; Jianxin LU ; Zhenyu YU ; Meijie HU ; Chengkai GUO ; Zhongqi QIU ; Zhongqi CHEN
Chinese Journal of Biotechnology 2025;41(10):3956-3968
Geminiviruses cause substantial crop yield losses worldwide. The replication initiator protein (Rep) encoded by geminiviruses is indispensable for geminiviral replication. The Rep protein encoded by beet severe curly top virus (BSCTV, genus Curtovirus, family Geminiviridae) induces VARIANT IN METHYLATION 5 (VIM5) expression in Arabidopsis leaves upon BSCTV infection. VIM5 functions as a ubiquitination-related E3 ligase to promote the proteasomal degradation of methyltransferases, resulting in reduction of methylation levels in the BSCTV C2-3 promoter. However, the specific domains of Rep responsible for VIM5 induction remain poorly characterized. Although Rep proteins from several geminiviruses act as viral suppressors of RNA silencing (VSRs), whether BSCTV Rep also possesses VSR activity remains to be illustrated. In this study, we employed a transient expression system in the 16c-GFP transgenic and the wild-type Nicotiana benthamiana plants to analyze the VSR and the VIM5-inducing activities of different truncated Rep proteins haboring distinct domains. We found that the N-terminal domain (amino acids 1-180) of Rep suppressed GFP silencing in 16c-GFP transgenic N. benthamiana leaves. The minimal N-terminal fragment (amino acids 1-104) induced VIM5 expression upon co-infiltration, while C-terminal truncations lacked VIM5-inducing activity. Our results indicate that the N-terminal domain of Rep encoded by BSCTV mediates the suppression of RNA silencing and induces VIM5 expression. Thus, our findings contribute to a better understanding of interactions between geminiviral Rep and plant hosts.
Geminiviridae/genetics*
;
Nicotiana/metabolism*
;
Arabidopsis/metabolism*
;
RNA Interference
;
Viral Proteins/metabolism*
;
Arabidopsis Proteins/metabolism*
;
Plants, Genetically Modified/metabolism*
;
Protein Domains
;
Plant Diseases/virology*
;
Methyltransferases/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*
;
DNA Helicases/genetics*
4.Application of virus-induced gene silencing technology to investigate the phytochrome metabolism mechanism: a review.
Duo PAN ; Songyue ZHANG ; Fangyi LIU ; Qingyin TIAN ; Xiulian YANG ; Lianggui WANG ; Yuanzheng YUE
Chinese Journal of Biotechnology 2023;39(7):2579-2599
Color is an important indicator for evaluating the ornamental traits of horticultural plants, and plant pigments is a key factor affecting the color phenotype of plants. Plant pigments and their metabolites play important roles in color formation of ornamental organs, regulation of plant growth and development, and response to adversity stress. It has therefore became a hot topic in the field of plant research. Virus-induced gene silencing (VIGS) is a vital genomics tool that specifically reduces host endogenous gene expression utilizing plant homology-dependent defense mechanisms. In addition, VIGS enables characterization of gene function by rapidly inducing the gene-silencing phenotypes in plants. It provides an efficient and feasible alternative for verifying gene function in plant species lacking genetic transformation systems. This paper reviews the current status of the application of VIGS technology in the biosynthesis, degradation and regulatory mechanisms of plant pigments. Moreover, this review discusses the potential and future prospects of VIGS technology in exploring the regulatory mechanisms of plant pigments, with the aim to further our understandings of the metabolic processes and regulatory mechanisms of different plant pigments as well as improving plant color traits.
Plant Viruses/genetics*
;
Plants/genetics*
;
Gene Silencing
;
Plant Development
;
Gene Expression Regulation, Plant
;
Genetic Vectors
5.Cucumber mosaic virus: Global genome comparison and beyond
Leonard Whye Kit Lim ; Ing Mee Hung ; Hung Hui Chung
Malaysian Journal of Microbiology 2022;18(1):79-92
Aims:
The cucumber mosaic virus (CMV) is categorized under the genus Cucumovirus and family Bromoviridae. This virus is known to infect over 1200 plant species from 100 families, including ornamental and horticultural plants. In this study, we pioneered a global genome comparison to decipher the unknown orchestrators behind the virulence and pathogenicity of CMV via the discovery of important single nucleotide polymorphic markers.
Methodology and results:
As a result, the genome size was found to be a potential preliminary country-specific marker for South Korea and the GC content can be utilized to preliminarily differentiate Turkey isolates from the others. The motif analysis as well as whole genome and coat protein phylogenetic trees were unable to form country-specific clusters. However, the coat protein haplotype analysis had successfully unconcealed country-specific single nucleotide polymorphic markers for Iran, Turkey and Japan isolates. Moreover, coat protein modelling and gene ontology prediction depicted high conservation across CMV isolates from different countries.
Conclusion, significance and impact of study
The country-specific single nucleotide polymorphic markers unearthed in this study may provide significant data towards the profiling of varying virulence and pathogenicity of CMV across the globe in time to combat the yield loss driven by this virus thru the most efficacious biological control measures in the future.
Cucumovirus--genetics
;
Genome, Microbial
6.The nucleocapsid protein of rice stripe virus in cell nuclei of vector insect regulates viral replication.
Wan ZHAO ; Junjie ZHU ; Hong LU ; Jiaming ZHU ; Fei JIANG ; Wei WANG ; Lan LUO ; Le KANG ; Feng CUI
Protein & Cell 2022;13(5):360-378
Rice stripe virus (RSV) transmitted by the small brown planthopper causes severe rice yield losses in Asian countries. Although viral nuclear entry promotes viral replication in host cells, whether this phenomenon occurs in vector cells remains unknown. Therefore, in this study, we systematically evaluated the presence and roles of RSV in the nuclei of vector insect cells. We observed that the nucleocapsid protein (NP) and viral genomic RNAs were partially transported into vector cell nuclei by utilizing the importin α nuclear transport system. When blocking NP nuclear localization, cytoplasmic RSV accumulation significantly increased. In the vector cell nuclei, NP bound the transcription factor YY1 and affected its positive regulation to FAIM. Subsequently, decreased FAIM expression triggered an antiviral caspase-dependent apoptotic reaction. Our results reveal that viral nuclear entry induces completely different immune effects in vector and host cells, providing new insights into the balance between viral load and the immunity pressure in vector insects.
Animals
;
Cell Nucleus
;
Hemiptera/metabolism*
;
Insect Vectors/genetics*
;
Insecta
;
Nucleocapsid Proteins/metabolism*
;
Oryza
;
Plant Diseases
;
Tenuivirus/metabolism*
;
Virus Replication
7.Construction and characterization of an infectious clone of Soybean mosaic virus isolate from Pinellia ternata.
Li ZHANG ; Defu WANG ; Yanni PEI ; Shen XIAN ; Yanbing NIU
Chinese Journal of Biotechnology 2020;36(5):949-958
Soybean mosaic virus (SMV), one of the major viral diseases of Pinellia ternata (Thunb.) Breit., has had a serious impact on its yield and quality. The construction of viral infectious clones is a powerful tool for reverse genetics research on viral gene function and interaction between virus and host. To clarify the molecular mechanism of SMV infection in Pinellia ternata, it is particularly important to construct the SMV full-length cDNA infectious clone. Therefore, the infectious clone of Soybean mosaic virus Shanxi Pinellia ternata isolate (SMV-SXBX) was constructed in this study by Gibson in vitro recombination system, and the healthy Pinellia ternata leaves were inoculated by Agrobacterium infiltration, further through mechanical passage and RT-PCR, confirming that the 3' end of the SMV-SXBX infectious clone had a stable infectivity when it contained 56-nt of poly(A) tail. This method is not only convenient and efficient, but also avoids the instability of SMV infectious clones in Escherichia coli. The construction of SMV full-length infectious cDNA clones laid the foundation for further study on the molecular mechanism of SMV replication and pathogenesis.
DNA, Complementary
;
Pinellia
;
virology
;
Plant Diseases
;
virology
;
Potyvirus
;
isolation & purification
;
metabolism
8.A new antiviral isoquinoline alkaloid from Thalictrum glandulosissimum.
Dian LUO ; Na LYU ; Ling-Min LIAO ; Qian GAO ; Yin-Ke LI ; Jing LI ; Xin LIU ; Xue-Mei LI ; Guang-Yu YANG ; Yan-Qing YE ; Qiu-Fen HU ; Miao DONG
China Journal of Chinese Materia Medica 2020;45(11):2568-2570
A new isoquinoline alkaloid(1) has been isolated from the whole plant of Thalictrum glandulosissimum by using various chromatographic techniques, including silica gel, sephadex, MCI-gel resin, and RP-HPLC, and its structure was determined as 1-(6-hydroxy-7-methylisoquinolin-1-yl) ethantone by physicochemical properties and spectroscopic data. This compound was evaluated for anti-tobacco mosaic virus(TMV) activity. The results showed that it had prominent anti-TMV activity with inhibition rates of 28.4%. This rate was closed to that of positive control.
Alkaloids
;
Antiviral Agents
;
Isoquinolines
;
Thalictrum
;
Tobacco Mosaic Virus
9.Development of a colloidal gold-based immunochromatographic strip for rapid detection of Rice stripe virus.
De-Qing HUANG ; Rui CHEN ; Ya-Qin WANG ; Jian HONG ; Xue-Ping ZHOU ; Jian-Xiang WU
Journal of Zhejiang University. Science. B 2019;20(4):343-354
Rice stripe virus (RSV) causes dramatic losses in rice production worldwide. In this study, two monoclonal antibodies (MAbs) 16E6 and 11C1 against RSV and a colloidal gold-based immunochromatographic strip were developed for specific, sensitive, and rapid detection of RSV in rice plant and planthopper samples. The MAb 16E6 was conjugated with colloidal gold and the MAb 11C1 was coated on the test line of the nitrocellulose membrane of the test strip. The specificity of the test strip was confirmed by a positive reaction to RSV-infected rice plants and small brown planthopper (SBPH), and negative reactions to five other rice viruses, healthy rice plants, four other vectors of five rice viruses, and non-viruliferous SBPH. Sensitivity analyses showed that the test strip could detect the virus in RSV-infected rice plant tissue crude extracts diluted to 1:20 480 (w/v, g/mL), and in individual viruliferous SBPH homogenate diluted to 1:2560 (individual SPBH/μL). The validity of the developed strip was further confirmed by tests using field-collected rice and SBPH samples. This newly developed test strip is a low-cost, fast, and easy-to-use tool for on-site detection of RSV infection during field epidemiological studies and paddy field surveys, and thus can benefit decision-making for RSV management in the field.
Antibodies, Monoclonal/chemistry*
;
China
;
Chromatography, Affinity/methods*
;
Collodion/chemistry*
;
Colloids/chemistry*
;
Gold Colloid/chemistry*
;
Materials Testing
;
Membranes, Artificial
;
Oryza/virology*
;
Plant Diseases/virology*
;
Reproducibility of Results
;
Sensitivity and Specificity
;
Species Specificity
;
Tenuivirus/isolation & purification*
10.Cysteine-Added Mutants of Turnip Yellow Mosaic Virus.
In Sun SHIN ; Doyeong KIM ; Tae Ju CHO
Journal of Bacteriology and Virology 2018;48(4):137-146
Native turnip yellow mosaic virus (TYMV) is relatively unreactive to maleimide agents, indicating few reactive thiol groups on TYMV. In the present study, we aimed to construct TYMV mutants that have reactive cysteine residues on the surface. To this end, we prepared a library of TYMV mutants where the Thr residue at the C-terminus of coat protein (CP) was replaced by a random sequence of six amino acids that included one cysteine. This library was introduced into Nicotiana benthamiana by agroinfiltration. The CP sequence of the TYMV RNA isolated from inoculated leaves was amplified by reverse transcription-PCR and then used to construct a second library. This process was repeated one more time, and the CP sequences of the TYMV RNA in the inoculated leaves were analyzed. Based on the analysis of over 11,000 CP sequences, the Cys mutants representing most abundant TYMV RNAs were constructed. Analysis of the mutants showed that four Cys mutants were nearly comparable to wildtype with respect to CP and viral RNA levels in N. benthamiana. All these mutants were highly reactive to fluoresceine-5-maleimide. This demonstrates that TYMV can be modified to have additional functional groups on the surface that would be useful for drug delivery.
Amino Acids
;
Brassica napus*
;
Cysteine
;
RNA
;
RNA, Viral
;
Tobacco
;
Tymovirus*


Result Analysis
Print
Save
E-mail